找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Moduli Spaces of Riemannian Metrics; Wilderich Tuschmann,David J. Wraith Textbook 2015 Springer Basel 2015 Riemannian metrics.curvature.ma

[复制链接]
查看: 15425|回复: 35
发表于 2025-3-21 16:40:50 | 显示全部楼层 |阅读模式
书目名称Moduli Spaces of Riemannian Metrics
编辑Wilderich Tuschmann,David J. Wraith
视频video
概述First book dealing exclusively with this topic which has hitherto only been treated in original research papers.Develops relevant background and explains the ideas involved.Short, concise text with to
丛书名称Oberwolfach Seminars
图书封面Titlebook: Moduli Spaces of Riemannian Metrics;  Wilderich Tuschmann,David J. Wraith Textbook 2015 Springer Basel 2015 Riemannian metrics.curvature.ma
描述This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.
出版日期Textbook 2015
关键词Riemannian metrics; curvature; manifolds; moduli spaces; topology
版次1
doihttps://doi.org/10.1007/978-3-0348-0948-1
isbn_softcover978-3-0348-0947-4
isbn_ebook978-3-0348-0948-1Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel 2015
The information of publication is updating

书目名称Moduli Spaces of Riemannian Metrics影响因子(影响力)




书目名称Moduli Spaces of Riemannian Metrics影响因子(影响力)学科排名




书目名称Moduli Spaces of Riemannian Metrics网络公开度




书目名称Moduli Spaces of Riemannian Metrics网络公开度学科排名




书目名称Moduli Spaces of Riemannian Metrics被引频次




书目名称Moduli Spaces of Riemannian Metrics被引频次学科排名




书目名称Moduli Spaces of Riemannian Metrics年度引用




书目名称Moduli Spaces of Riemannian Metrics年度引用学科排名




书目名称Moduli Spaces of Riemannian Metrics读者反馈




书目名称Moduli Spaces of Riemannian Metrics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:12 | 显示全部楼层
Wilderich Tuschmann,David J. WraithFirst book dealing exclusively with this topic which has hitherto only been treated in original research papers.Develops relevant background and explains the ideas involved.Short, concise text with to
发表于 2025-3-22 01:29:42 | 显示全部楼层
发表于 2025-3-22 05:24:21 | 显示全部楼层
发表于 2025-3-22 12:09:08 | 显示全部楼层
1661-237X and explains the ideas involved.Short, concise text with toThis book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative
发表于 2025-3-22 14:09:04 | 显示全部楼层
发表于 2025-3-22 17:50:08 | 显示全部楼层
Textbook 2015ture conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a
发表于 2025-3-23 00:46:32 | 显示全部楼层
发表于 2025-3-23 04:12:44 | 显示全部楼层
9楼
发表于 2025-3-23 07:59:22 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-2 09:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表