找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modular Forms and Fermat’s Last Theorem; Gary Cornell,Joseph H. Silverman,Glenn Stevens Book 1997 Springer-Verlag New York, Inc. 1997 arit

[复制链接]
查看: 22098|回复: 35
发表于 2025-3-21 20:00:08 | 显示全部楼层 |阅读模式
书目名称Modular Forms and Fermat’s Last Theorem
编辑Gary Cornell,Joseph H. Silverman,Glenn Stevens
视频video
图书封面Titlebook: Modular Forms and Fermat’s Last Theorem;  Gary Cornell,Joseph H. Silverman,Glenn Stevens Book 1997 Springer-Verlag New York, Inc. 1997 arit
描述This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. Contributor‘s includeThe purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi-stable) elliptic curve over Q is modular, and to explain how Wiles‘ result can be combined with Ribet‘s theorem and ideas of Frey and Serre to show, at long last, that Fermat‘s Last Theorem is true. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles‘ proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre‘s conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles‘ proof. In recognition of the historical significa
出版日期Book 1997
关键词arithmetic; deformation theory; elliptic curve; number theory
版次1
doihttps://doi.org/10.1007/978-1-4612-1974-3
isbn_softcover978-0-387-98998-3
isbn_ebook978-1-4612-1974-3
copyrightSpringer-Verlag New York, Inc. 1997
The information of publication is updating

书目名称Modular Forms and Fermat’s Last Theorem影响因子(影响力)




书目名称Modular Forms and Fermat’s Last Theorem影响因子(影响力)学科排名




书目名称Modular Forms and Fermat’s Last Theorem网络公开度




书目名称Modular Forms and Fermat’s Last Theorem网络公开度学科排名




书目名称Modular Forms and Fermat’s Last Theorem被引频次




书目名称Modular Forms and Fermat’s Last Theorem被引频次学科排名




书目名称Modular Forms and Fermat’s Last Theorem年度引用




书目名称Modular Forms and Fermat’s Last Theorem年度引用学科排名




书目名称Modular Forms and Fermat’s Last Theorem读者反馈




书目名称Modular Forms and Fermat’s Last Theorem读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:44:30 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-1974-3arithmetic; deformation theory; elliptic curve; number theory
发表于 2025-3-22 02:37:13 | 显示全部楼层
发表于 2025-3-22 07:02:39 | 显示全部楼层
9 through 18, 1995 at Boston University. Contributor‘s includeThe purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi-stable) elliptic curve over Q is modular, and to explain how Wiles‘ result can be comb
发表于 2025-3-22 11:32:51 | 显示全部楼层
发表于 2025-3-22 16:08:57 | 显示全部楼层
发表于 2025-3-22 20:47:59 | 显示全部楼层
发表于 2025-3-22 22:20:10 | 显示全部楼层
8楼
发表于 2025-3-23 02:59:57 | 显示全部楼层
9楼
发表于 2025-3-23 08:45:11 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 02:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表