找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modern Methodology and Applications in Spatial-Temporal Modeling; Gareth William Peters,Tomoko Matsui Book 2015 The Author(s) 2015 Audio a

[复制链接]
查看: 34776|回复: 35
发表于 2025-3-21 20:04:13 | 显示全部楼层 |阅读模式
书目名称Modern Methodology and Applications in Spatial-Temporal Modeling
编辑Gareth William Peters,Tomoko Matsui
视频video
概述Covers specialized topics in spatial-temporal modeling provided by world experts for an introduction to key components.Discusses a rigorous probabilistic and statistical framework for a range of conte
丛书名称SpringerBriefs in Statistics
图书封面Titlebook: Modern Methodology and Applications in Spatial-Temporal Modeling;  Gareth William Peters,Tomoko Matsui Book 2015 The Author(s) 2015 Audio a
描述​This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet pr
出版日期Book 2015
关键词Audio and Music Signal Processing; Gaussian Processes; Kernel Methods; Non-Parametric Bayesian Inferenc
版次1
doihttps://doi.org/10.1007/978-4-431-55339-7
isbn_softcover978-4-431-55338-0
isbn_ebook978-4-431-55339-7Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2015
The information of publication is updating

书目名称Modern Methodology and Applications in Spatial-Temporal Modeling影响因子(影响力)




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling影响因子(影响力)学科排名




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling网络公开度




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling网络公开度学科排名




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling被引频次




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling被引频次学科排名




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling年度引用




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling年度引用学科排名




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling读者反馈




书目名称Modern Methodology and Applications in Spatial-Temporal Modeling读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:30:23 | 显示全部楼层
SpringerBriefs in Statisticshttp://image.papertrans.cn/m/image/637253.jpg
发表于 2025-3-22 01:57:45 | 显示全部楼层
https://doi.org/10.1007/978-4-431-55339-7Audio and Music Signal Processing; Gaussian Processes; Kernel Methods; Non-Parametric Bayesian Inferenc
发表于 2025-3-22 05:15:17 | 显示全部楼层
发表于 2025-3-22 12:39:56 | 显示全部楼层
发表于 2025-3-22 15:10:04 | 显示全部楼层
发表于 2025-3-22 17:41:38 | 显示全部楼层
发表于 2025-3-23 00:30:30 | 显示全部楼层
发表于 2025-3-23 04:42:39 | 显示全部楼层
Book 2015ed involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant
发表于 2025-3-23 08:08:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 01:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表