找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modern Algorithms of Cluster Analysis; Slawomir‘Wierzchoń,Mieczyslaw Kłopotek Book 2018 Springer International Publishing AG 2018 Cluster

[复制链接]
查看: 53670|回复: 35
发表于 2025-3-21 18:37:28 | 显示全部楼层 |阅读模式
书目名称Modern Algorithms of Cluster Analysis
编辑Slawomir‘Wierzchoń,Mieczyslaw Kłopotek
视频video
概述Provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
丛书名称Studies in Big Data
图书封面Titlebook: Modern Algorithms of Cluster Analysis;  Slawomir‘Wierzchoń,Mieczyslaw Kłopotek Book 2018 Springer International Publishing AG 2018 Cluster
描述.This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc.. .The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem.. .Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented.. .In addition, the book provides an overview of approaches to handling large collec
出版日期Book 2018
关键词Cluster Analysis; Big Data; Data Sets; Spectral Clustering; Combinatorial Cluster Analysis
版次1
doihttps://doi.org/10.1007/978-3-319-69308-8
isbn_softcover978-3-319-88752-4
isbn_ebook978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Modern Algorithms of Cluster Analysis影响因子(影响力)




书目名称Modern Algorithms of Cluster Analysis影响因子(影响力)学科排名




书目名称Modern Algorithms of Cluster Analysis网络公开度




书目名称Modern Algorithms of Cluster Analysis网络公开度学科排名




书目名称Modern Algorithms of Cluster Analysis被引频次




书目名称Modern Algorithms of Cluster Analysis被引频次学科排名




书目名称Modern Algorithms of Cluster Analysis年度引用




书目名称Modern Algorithms of Cluster Analysis年度引用学科排名




书目名称Modern Algorithms of Cluster Analysis读者反馈




书目名称Modern Algorithms of Cluster Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:13:56 | 显示全部楼层
Book 2018ok explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to pre
发表于 2025-3-22 00:47:32 | 显示全部楼层
发表于 2025-3-22 05:15:46 | 显示全部楼层
发表于 2025-3-22 09:12:45 | 显示全部楼层
978-3-319-88752-4Springer International Publishing AG 2018
发表于 2025-3-22 13:33:59 | 显示全部楼层
Modern Algorithms of Cluster Analysis978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
发表于 2025-3-22 20:03:29 | 显示全部楼层
Studies in Big Datahttp://image.papertrans.cn/m/image/636903.jpg
发表于 2025-3-23 00:10:16 | 显示全部楼层
发表于 2025-3-23 04:09:04 | 显示全部楼层
Slawomir‘Wierzchoń,Mieczyslaw KłopotekProvides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
发表于 2025-3-23 05:58:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 16:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表