找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modeling Information Diffusion in Online Social Networks with Partial Differential Equations; Haiyan Wang,Feng Wang,Kuai Xu Book 2020 Spri

[复制链接]
查看: 51908|回复: 35
发表于 2025-3-21 19:06:03 | 显示全部楼层 |阅读模式
书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations
编辑Haiyan Wang,Feng Wang,Kuai Xu
视频video
概述Provides a new and timely modeling approach for information diffusion in social media.Written by the experts who initiated the approach of modeling with partial differential equations (PDEs).Accessibl
丛书名称Surveys and Tutorials in the Applied Mathematical Sciences
图书封面Titlebook: Modeling Information Diffusion in Online Social Networks with Partial Differential Equations;  Haiyan Wang,Feng Wang,Kuai Xu Book 2020 Spri
描述The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling probl
出版日期Book 2020
关键词Information Diffusion; Online Social Networks; Partial Differential Equations; Reaction-Diffusion Equat
版次1
doihttps://doi.org/10.1007/978-3-030-38852-2
isbn_softcover978-3-030-38850-8
isbn_ebook978-3-030-38852-2Series ISSN 2199-4765 Series E-ISSN 2199-4773
issn_series 2199-4765
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations影响因子(影响力)




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations影响因子(影响力)学科排名




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations网络公开度




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations网络公开度学科排名




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations被引频次




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations被引频次学科排名




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations年度引用




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations年度引用学科排名




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations读者反馈




书目名称Modeling Information Diffusion in Online Social Networks with Partial Differential Equations读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:27:27 | 显示全部楼层
Book 2020o the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Eucl
发表于 2025-3-22 01:05:13 | 显示全部楼层
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations
发表于 2025-3-22 06:20:52 | 显示全部楼层
Book 2020bing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling probl
发表于 2025-3-22 10:12:54 | 显示全部楼层
发表于 2025-3-22 16:36:50 | 显示全部楼层
发表于 2025-3-22 18:09:05 | 显示全部楼层
Modeling Information Diffusion in Online Social Networks with Partial Differential Equations978-3-030-38852-2Series ISSN 2199-4765 Series E-ISSN 2199-4773
发表于 2025-3-23 00:24:25 | 显示全部楼层
发表于 2025-3-23 03:49:10 | 显示全部楼层
https://doi.org/10.1007/978-3-030-38852-2Information Diffusion; Online Social Networks; Partial Differential Equations; Reaction-Diffusion Equat
发表于 2025-3-23 09:06:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 09:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表