找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces; Lev V. Sabinin Book 2004 Springer Science+Business Media B.V. 2004 Lie

[复制链接]
查看: 41269|回复: 35
发表于 2025-3-21 16:43:48 | 显示全部楼层 |阅读模式
书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces
编辑Lev V. Sabinin
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces;  Lev V. Sabinin Book 2004 Springer Science+Business Media B.V. 2004 Lie
描述As K. Nomizu has justly noted [K. Nomizu, 56], Differential Geometry ever will be initiating newer and newer aspects of the theory of Lie groups. This monograph is devoted to just some such aspects of Lie groups and Lie algebras. New differential geometric problems came into being in connection with so called subsymmetric spaces, subsymmetries, and mirrors introduced in our works dating back to 1957 [L.V. Sabinin, 58a,59a,59b]. In addition, the exploration of mirrors and systems of mirrors is of interest in the case of symmetric spaces. Geometrically, the most rich in content there appeared to be the homogeneous Riemannian spaces with systems of mirrors generated by commuting subsymmetries, in particular, so called tri-symmetric spaces introduced in [L.V. Sabinin, 61b]. As to the concrete geometric problem which needs be solved and which is solved in this monograph, we indicate, for example, the problem of the classification of all tri-symmetric spaces with simple compact groups of motions. Passing from groups and subgroups connected with mirrors and subsymmetries to the corresponding Lie algebras and subalgebras leads to an important new concept of the involutive sum of Lie algebr
出版日期Book 2004
关键词Lie algebra; Lie group; Riemannian manifold; brandonwiskunde; curvature; differential geometry
版次1
doihttps://doi.org/10.1007/1-4020-2545-9
isbn_softcover978-90-481-6676-3
isbn_ebook978-1-4020-2545-7
copyrightSpringer Science+Business Media B.V. 2004
The information of publication is updating

书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces影响因子(影响力)




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces影响因子(影响力)学科排名




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces网络公开度




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces网络公开度学科排名




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces被引频次




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces被引频次学科排名




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces年度引用




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces年度引用学科排名




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces读者反馈




书目名称Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:51:57 | 显示全部楼层
发表于 2025-3-22 03:02:00 | 显示全部楼层
Book 2004ple, the problem of the classification of all tri-symmetric spaces with simple compact groups of motions. Passing from groups and subgroups connected with mirrors and subsymmetries to the corresponding Lie algebras and subalgebras leads to an important new concept of the involutive sum of Lie algebr
发表于 2025-3-22 07:30:40 | 显示全部楼层
, for example, the problem of the classification of all tri-symmetric spaces with simple compact groups of motions. Passing from groups and subgroups connected with mirrors and subsymmetries to the corresponding Lie algebras and subalgebras leads to an important new concept of the involutive sum of Lie algebr978-90-481-6676-3978-1-4020-2545-7
发表于 2025-3-22 11:24:35 | 显示全部楼层
发表于 2025-3-22 14:49:05 | 显示全部楼层
发表于 2025-3-22 19:36:59 | 显示全部楼层
978-90-481-6676-3Springer Science+Business Media B.V. 2004
发表于 2025-3-22 21:56:45 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/m/image/634746.jpg
发表于 2025-3-23 04:51:17 | 显示全部楼层
https://doi.org/10.1007/1-4020-2545-9Lie algebra; Lie group; Riemannian manifold; brandonwiskunde; curvature; differential geometry
发表于 2025-3-23 06:08:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 22:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表