找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Microlocal Methods in Mathematical Physics and Global Analysis; Daniel Grieser,Stefan Teufel,Andras Vasy Conference proceedings 2013 Sprin

[复制链接]
楼主: 和尚吃肉片
发表于 2025-3-23 09:42:25 | 显示全部楼层
发表于 2025-3-23 15:24:26 | 显示全部楼层
发表于 2025-3-23 20:52:16 | 显示全部楼层
发表于 2025-3-23 23:16:51 | 显示全部楼层
Local Smoothing with a Prescribed Loss for the Schrödinger EquationIn ., the Schrödinger propagator at time . is unitary on .. spaces. However, solutions to the linear Schrödinger equation on . are smoother . in time, and . in space:
发表于 2025-3-24 02:50:35 | 显示全部楼层
Propagation Through Trapped Sets and Semiclassical Resolvent EstimatesLet .,..We are interested in semiclassical resolvent estimates of the form. for . > 0,. with.,. > 1 ∕ 2. We ask: how is the function .(.) for which (1) holds affected by the relationship between the support of . and the trapped set at energy ., defined by .Here .and ..
发表于 2025-3-24 07:54:35 | 显示全部楼层
A Nonlinear Adiabatic Theorem for Coherent StatesWe present a result obtained in collaboration with Rémi Carles on the propagation of coherent states for a 1-d cubic nonlinear Schrödinger equation in a semi-classical regime (.):
发表于 2025-3-24 12:37:39 | 显示全部楼层
The Effective Hamiltonian in Curved Quantum Waveguides and When It Does Not WorkWe are concerned with the singular operator limit for the Dirichlet Laplacian in a three-dimensional curved tube (cf. Fig. 1) when its cross-section shrinks to zero.
发表于 2025-3-24 17:27:38 | 显示全部楼层
发表于 2025-3-24 21:46:34 | 显示全部楼层
发表于 2025-3-25 00:24:15 | 显示全部楼层
On the Closure of Elliptic Wedge OperatorsWe present a semi-Fredholm theorem for the minimal extension of an elliptic differential operator on a manifold with wedge singularities and give, under suitable assumptions, a full asymptotic expansion of the trace of the resolvent.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 17:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表