找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Metric and Differential Geometry; The Jeff Cheeger Ann Xianzhe Dai,Xiaochun Rong Conference proceedings 2012 Springer Basel 2012 K-theory i

[复制链接]
查看: 38683|回复: 49
发表于 2025-3-21 16:44:34 | 显示全部楼层 |阅读模式
书目名称Metric and Differential Geometry
副标题The Jeff Cheeger Ann
编辑Xianzhe Dai,Xiaochun Rong
视频video
概述Original research papers and survey articles by distinguished experts in their fields.Broad range of topics in metric and differential geometry, focusing on the most recent advances.Dedicated to the 6
丛书名称Progress in Mathematics
图书封面Titlebook: Metric and Differential Geometry; The Jeff Cheeger Ann Xianzhe Dai,Xiaochun Rong Conference proceedings 2012 Springer Basel 2012 K-theory i
描述.Metric and Differential Geometry. grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kähler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. .Contributors: .M.T. Anderson.J.-M. Bismut.X. Chen.X. Dai.R. Harvey.P. Koskela.B. Lawson.X. Ma.R. Melrose.W. Müller.A. Naor.J. Simons.C. Sormani.D. Sullivan.S. Sun.G. Tian.K. Wildrick.W. Zhang.
出版日期Conference proceedings 2012
关键词K-theory in geometry; distance geometry; global differential geometry
版次1
doihttps://doi.org/10.1007/978-3-0348-0257-4
isbn_softcover978-3-0348-0753-1
isbn_ebook978-3-0348-0257-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 2012
The information of publication is updating

书目名称Metric and Differential Geometry影响因子(影响力)




书目名称Metric and Differential Geometry影响因子(影响力)学科排名




书目名称Metric and Differential Geometry网络公开度




书目名称Metric and Differential Geometry网络公开度学科排名




书目名称Metric and Differential Geometry被引频次




书目名称Metric and Differential Geometry被引频次学科排名




书目名称Metric and Differential Geometry年度引用




书目名称Metric and Differential Geometry年度引用学科排名




书目名称Metric and Differential Geometry读者反馈




书目名称Metric and Differential Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:39:06 | 显示全部楼层
发表于 2025-3-22 01:08:40 | 显示全部楼层
发表于 2025-3-22 08:22:20 | 显示全部楼层
发表于 2025-3-22 10:54:50 | 显示全部楼层
How Riemannian Manifolds Converge of metric spaces, convergence of metric measure spaces, intrinsic Flat convergence of integral current spaces, and ultralimits of metric spaces. We close with a speculative section addressing possible notions of intrinsic varifold convergence, convergence of Lorentzian manifolds and area convergence.
发表于 2025-3-22 15:00:39 | 显示全部楼层
发表于 2025-3-22 17:20:43 | 显示全部楼层
Space of Kähler Metrics (V) – Kähler Quantizationas non-positive curvature. There is associated to ℋ a sequence of finite-dimensional symmetric spaces. of non-compact Type. We prove that ℋ is the limit of .as metric spaces in certain sense. As applications, this provides more geometric proofs of certain known geometric properties of the space ℋ.
发表于 2025-3-22 23:29:21 | 显示全部楼层
Split Special Lagrangian Geometrygeometry was first introduced. The natural setting is provided by doing geometry with the complex numbers . replaced by the double numbers ., where . with – = -1 is replaced by .with .. A rather surprising amount of complex geometry carries over, almost untouched, and this has been the subject of ma
发表于 2025-3-23 01:33:53 | 显示全部楼层
发表于 2025-3-23 05:46:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 00:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表