找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Methods of Microarray Data Analysis; Papers from CAMDA ’0 Simon M. Lin,Kimberly F. Johnson Book 2002 Springer Science+Business Media New Yo

[复制链接]
查看: 29912|回复: 50
发表于 2025-3-21 18:29:18 | 显示全部楼层 |阅读模式
书目名称Methods of Microarray Data Analysis
副标题Papers from CAMDA ’0
编辑Simon M. Lin,Kimberly F. Johnson
视频video
图书封面Titlebook: Methods of Microarray Data Analysis; Papers from CAMDA ’0 Simon M. Lin,Kimberly F. Johnson Book 2002 Springer Science+Business Media New Yo
描述Microarray technology is a major experimental tool forfunctional genomic explorations, and will continue to be a major toolthroughout this decade and beyond. The recent explosion of thistechnology threatens to overwhelm the scientific community withmassive quantities of data. Because microarray data analysis is anemerging field, very few analytical models currently exist. .Methodsof. .Microarray Data Analysis. is one of the first booksdedicated to this exciting new field. In a single reference, readerscan learn about the most up-to-date methods ranging from datanormalization, feature selection and discriminative analysis tomachine learning techniques. .Currently, there are no standard procedures for the design andanalysis of microarray experiments. .Methods of Microarray Data..Analysis. focuses on two well-known data sets, using a differentmethod of analysis in each chapter. Real examples expose the strengthsand weaknesses of each method for a given situation, aimed at helpingreaders choose appropriate protocols and utilize them for their owndata set. In addition, web links are provided to the programs andtools discussed in several chapters. This book is an excellentreference not o
出版日期Book 2002
关键词DNA; Microarray; bioinformatics; classification; data analysis; data mining; evolution; gene expression; gen
版次1
doihttps://doi.org/10.1007/978-1-4615-0873-1
isbn_softcover978-1-4613-5281-5
isbn_ebook978-1-4615-0873-1
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Methods of Microarray Data Analysis影响因子(影响力)




书目名称Methods of Microarray Data Analysis影响因子(影响力)学科排名




书目名称Methods of Microarray Data Analysis网络公开度




书目名称Methods of Microarray Data Analysis网络公开度学科排名




书目名称Methods of Microarray Data Analysis被引频次




书目名称Methods of Microarray Data Analysis被引频次学科排名




书目名称Methods of Microarray Data Analysis年度引用




书目名称Methods of Microarray Data Analysis年度引用学科排名




书目名称Methods of Microarray Data Analysis读者反馈




书目名称Methods of Microarray Data Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:36:53 | 显示全部楼层
发表于 2025-3-22 01:54:37 | 显示全部楼层
Evolutionary Computation in Microarray Data Analysis genes simultaneously in a particular cell or tissue has far outpaced our ability to store, manage, and analyse the data being generated. In this review, we explore the use of evolutionary computation for dealing with some of the difficult statistical and computational challenges that have resulted
发表于 2025-3-22 04:48:21 | 显示全部楼层
发表于 2025-3-22 08:58:57 | 显示全部楼层
发表于 2025-3-22 16:38:23 | 显示全部楼层
A Method to Improve Detection of Disease Using Selectively Expressed Genes in Microarray Datay expressed genes. This method does not rely on scaling or normalization factors in the comparison of data across subjects. Several genes in the . dataset are selectively expressed between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). We show that the presence or absence of ex
发表于 2025-3-22 20:10:37 | 显示全部楼层
发表于 2025-3-23 00:53:04 | 显示全部楼层
Classical Statistical Approaches to Molecular Classification of Cancer from Gene Expression Profiliner to utilize more robust, classical statistical methodologies in data analysis. We have demonstrated that classical statistical methods are applicable to analysis of data previously presented by .. Our preliminary analysis of all 6817 genes involves simple t-tests for statistically significant sepa
发表于 2025-3-23 03:23:34 | 显示全部楼层
发表于 2025-3-23 08:56:37 | 显示全部楼层
Applying Classification Separability Analysis to Microarray Datairst derive a new unified maximum separability analysis (UMSA) procedure for constructing linear classifiers and demonstrate that the procedure unifies the classic linear discriminant analysis method and the optimal margin hyperplane method as used in support vector machines. We then present a stepw
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 10:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表