找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Methods and Applications for Modeling and Simulation of Complex Systems; 19th Asia Simulation Gary Tan,Axel Lehmann,Wentong Cai Conference

[复制链接]
楼主: Auditory-Nerve
发表于 2025-3-28 15:45:05 | 显示全部楼层
发表于 2025-3-28 22:25:42 | 显示全部楼层
发表于 2025-3-28 23:16:04 | 显示全部楼层
Conference proceedings 2019pical sections on simulation and modeling methodology; numerical and Monte Carlo simulation; simulation applications: blockchain, deep learning and cloud; simulation and visualization; simulation applications; short papers. .
发表于 2025-3-29 03:51:59 | 显示全部楼层
1865-0929 ized in topical sections on simulation and modeling methodology; numerical and Monte Carlo simulation; simulation applications: blockchain, deep learning and cloud; simulation and visualization; simulation applications; short papers. .978-981-15-1077-9978-981-15-1078-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-29 10:11:46 | 显示全部楼层
发表于 2025-3-29 13:55:19 | 显示全部楼层
发表于 2025-3-29 18:40:23 | 显示全部楼层
发表于 2025-3-29 21:06:09 | 显示全部楼层
Robot Arm Control Method of Moving Below Object Based on Deep Reinforcement Learningrly designed. As is shown by the results, the control agent trained in this paper show good performance in controlling the robot arm, which in turn confirms the effectiveness of the training algorithm with effective data support of the constructed simulation environment.
发表于 2025-3-30 00:48:43 | 显示全部楼层
On Evaluating Rust as a Programming Language for the Future of Massive Agent-Based Simulationslatforms, exploiting Rust as programming language. The Rust-AB architecture as well as an investigation on the ability of Rust to develop ABM simulations are discussed. An ABM simulation written in Rust-AB, and a performance comparison against the well-adopted Java ABM toolkit MASON is also presented.
发表于 2025-3-30 07:01:06 | 显示全部楼层
Conv-LSTM: Pedestrian Trajectory Prediction in Crowded Scenariosto predict the spatiotemporal pedestrian trajectory sequences. The results show that our method reduces the displacement offset error better than recent works including Social-LSTM, SS-LSTM, CNN, Social-GAN, Scene-LSTM, providing more realistic trajectory prediction for the chaotic crowd.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 06:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表