找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis; First International Yipeng Hu,Roxane Licandro,Jordina Torrents B

[复制链接]
查看: 29962|回复: 58
发表于 2025-3-21 16:19:54 | 显示全部楼层 |阅读模式
书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis
副标题First International
编辑Yipeng Hu,Roxane Licandro,Jordina Torrents Barrena
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis; First International  Yipeng Hu,Roxane Licandro,Jordina Torrents B
描述.This book constitutes the proceedings of the First International Workshop on Advances in Simplifying Medical UltraSound, ASMUS 2020, and the 5th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2020, held in conjunction with MICCAI 2020, the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference was planned to take place in Lima, Peru, but changed to an online event due to the Coronavirus pandemic. .. ..For ASMUS 2020, 19 contributions were accepted from 26 submissions; the 14 contributions from the PIPPI workshop were carefully reviewed and selected from 21 submissions. The papers were organized in topical sections named: diagnosis and measurement; segmentation, captioning and enhancement; localisation and guidance; robotics and skill assessment, and PIPPI 2020..
出版日期Conference proceedings 2020
关键词artificial intelligence; bioinformatics; computer vision; deep learning; education; image processing; imag
版次1
doihttps://doi.org/10.1007/978-3-030-60334-2
isbn_softcover978-3-030-60333-5
isbn_ebook978-3-030-60334-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis影响因子(影响力)




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis影响因子(影响力)学科排名




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis网络公开度




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis网络公开度学科排名




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis被引频次




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis被引频次学科排名




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis年度引用




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis年度引用学科排名




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis读者反馈




书目名称Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:46:40 | 显示全部楼层
Conference proceedings 2020rnational Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2020, held in conjunction with MICCAI 2020, the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference was planned to take place in Lima, Peru, but changed to an online
发表于 2025-3-22 01:05:21 | 显示全部楼层
0302-9743 e 5th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2020, held in conjunction with MICCAI 2020, the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference was planned to take place in Lima, Peru, but changed to
发表于 2025-3-22 06:57:21 | 显示全部楼层
发表于 2025-3-22 10:26:51 | 显示全部楼层
Calibrated Bayesian Neural Networks to Estimate Gestational Age and Its Uncertainty on Fetal Brain U RMSE and MAE of 9.6 and 12.5 days respectively over the GA range. We explore the robustness of the BNN architecture to invalid input images by testing with (i) a different dataset derived from routine anomaly scanning and (ii) scans of a different fetal anatomy.
发表于 2025-3-22 14:57:47 | 显示全部楼层
发表于 2025-3-22 17:56:13 | 显示全部楼层
Deep Learning for Automatic Spleen Length Measurement in Sickle Cell Disease Patients made by human experts. Our best model (segmentation-based) achieved a percentage length error of 7.42%, which is approaching the level of inter-observer variability (5.47%–6.34%). To the best of our knowledge, this is the first attempt to measure spleen size in a fully automated way from ultrasound images.
发表于 2025-3-22 23:25:29 | 显示全部楼层
发表于 2025-3-23 05:26:19 | 显示全部楼层
发表于 2025-3-23 08:33:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 05:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表