找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Learning with Limited and Noisy Data; Second International Zhiyun Xue,Sameer Antani,Zhaohui Liang Conference proceedings 2023

[复制链接]
楼主: 投降
发表于 2025-3-23 13:11:30 | 显示全部楼层
发表于 2025-3-23 14:58:39 | 显示全部楼层
发表于 2025-3-23 19:36:40 | 显示全部楼层
Label-Efficient Contrastive Learning-Based Model for Nuclei Detection and Classification in 3D Cardim Intensity Projection (MIP) to convert immunofluorescent images with multiple slices to 2D images, which can cause signals from different z-stacks to falsely appear associated with each other. To overcome this, we devised an Extended Maximum Intensity Projection (EMIP) approach that addresses issue
发表于 2025-3-23 22:43:47 | 显示全部楼层
Affordable Graph Neural Network Framework Using Topological Graph Contractionmory-efficient GNN training framework (C-QSIGN), which incorporates our proposed contraction method along with several other state-of-the-art (SOTA) methods. Furthermore, we benchmarked our proposed model performance in terms of prediction quality and GPU usage against other SOTA methods. We show th
发表于 2025-3-24 05:03:37 | 显示全部楼层
发表于 2025-3-24 09:45:49 | 显示全部楼层
A Multitask Framework for Label Refinement and Lesion Segmentation in Clinical Brain ImagingD scans. In extensive experiments on both proprietary and public clinical brain imaging datasets, we demonstrate that our end-to-end framework offers strong performance improvements over prevailing baselines on both label refinement and lesion segmentation. Our proposed framework maintains performan
发表于 2025-3-24 11:28:12 | 显示全部楼层
发表于 2025-3-24 17:20:01 | 显示全部楼层
Feasibility of Universal Anomaly Detection Without Knowing the Abnormality in Medical Imagesnomaly detection model during the validation phase using only normal images, and (3) proposing a simple decision-level ensemble method to leverage the advantage of different kinds of anomaly detection without knowing the abnormality. The results of our experiments indicate that none of the evaluated
发表于 2025-3-24 19:20:43 | 显示全部楼层
发表于 2025-3-25 00:17:05 | 显示全部楼层
Masked Image Modeling for Label-Efficient Segmentation in Two-Photon Excitation Microscopy of intensity and foreground structures, and inter-channel correlations that are specific to microscopy images. We show that these methods are effective for generating representations of TPEM images, and identify novel insights on how MIM can be modified to yield more salient image representations f
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 05:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表