找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012; 15th International C Nicholas Ayache,Hervé Delingette,Kensaku Mo

[复制链接]
楼主: 老鼠系领带
发表于 2025-3-25 04:05:42 | 显示全部楼层
发表于 2025-3-25 07:54:33 | 显示全部楼层
发表于 2025-3-25 15:05:24 | 显示全部楼层
发表于 2025-3-25 16:07:06 | 显示全部楼层
Self-similarity Weighted Mutual Information: A New Nonrigid Image Registration Metricstration is an active field of research. We propose a self-similarity weighted graph-based implementation of .-mutual information (.-MI) for nonrigid image registration. The new .lf .imilarity .-. (SeSaMI) metric takes local structures into account and is robust against signal non-stationarity and i
发表于 2025-3-25 21:50:48 | 显示全部楼层
发表于 2025-3-26 03:50:25 | 显示全部楼层
Selection of Optimal Hyper-Parameters for Estimation of Uncertainty in MRI-TRUS Registration of the ostate substructure and apex are not always visible which may make the seed placement sub-optimal. Based on an elastic model of the prostate created from MRI, where the prostate substructure and apex are clearly visible, we use a Bayesian approach to estimate the posterior distribution on deformatio
发表于 2025-3-26 07:58:46 | 显示全部楼层
Globally Optimal Deformable Registration on a Minimum Spanning Tree Using Dense Displacement Samplin optimisation, which is prone to local minima. Recent advances in the mathematics and new programming methods enable these disadvantages to be overcome using discrete optimisation. In this paper, we present a new technique ., which employs a discrete .ns..isplacement .ampling for the deformable regi
发表于 2025-3-26 11:25:52 | 显示全部楼层
发表于 2025-3-26 14:40:38 | 显示全部楼层
Regional Manifold Learning for Deformable Registration of Brain MR Imagesdical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first le
发表于 2025-3-26 17:43:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 16:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表