找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017; 20th International C Maxime Descoteaux,Lena Maier-Hein,Simon Duch

[复制链接]
楼主: 文化修养
发表于 2025-3-23 12:25:18 | 显示全部楼层
Li Zhang,Dana Cobzas,Alan Wilman,Linglong Kong komplett aktualisierten 6. Auflage: Schmerz, Geschlecht und Opioidwirkung, Bewertung transdermaler Applikationstechniken, Therapie opioidbedingter Nebenwirkungen, Opioidanwendung bei Säuglingen und alten Mensc978-3-662-09096-1
发表于 2025-3-23 14:58:26 | 显示全部楼层
发表于 2025-3-23 21:33:03 | 显示全部楼层
发表于 2025-3-24 02:08:44 | 显示全部楼层
Mingliang Wang,Xiaoke Hao,Jiashuang Huang,Kangcheng Wang,Xijia Xu,Daoqiang Zhang
发表于 2025-3-24 02:53:08 | 显示全部楼层
发表于 2025-3-24 07:56:34 | 显示全部楼层
发表于 2025-3-24 13:04:55 | 显示全部楼层
Deep Multi-task Multi-channel Learning for Joint Classification and Regression of Brain Statuss in a data-driven manner, and then extract multiple image patches around these detected landmarks. A deep multi-task multi-channel convolutional neural network is then developed for joint disease classification and clinical score regression. We train our model on a large multi-center cohort (., ADN
发表于 2025-3-24 18:17:52 | 显示全部楼层
Multi-level Multi-task Structured Sparse Learning for Diagnosis of Schizophrenia Disease classifiers. Finally, we adopt an ensemble strategy to combine outputs of all SVM classifiers to achieve the final decision. Our method has been evaluated on 46 subjects, and the superior classification results demonstrate the effectiveness of our proposed method as compared to other methods.
发表于 2025-3-24 22:39:48 | 显示全部楼层
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Daeature selection in an unified formulation, thus alleviating the modality heterogeneity issue and making all the samples comparable to share a common classifier in the RKHS. The resulting classifier obviously captures the nonlinear data-to-label relationship. We have tested our method using MRI and
发表于 2025-3-25 02:35:43 | 显示全部楼层
GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction experiments have been evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The advantage of proposed model is verified by improved stability of selected lesion features and better classification results.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-28 04:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表