找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops; ISIC 2023, Care-AI 2 M. Emre Celebi,Md Sirajus Salekin,

[复制链接]
楼主: Hazardous
发表于 2025-3-27 00:19:32 | 显示全部楼层
发表于 2025-3-27 01:10:57 | 显示全部楼层
发表于 2025-3-27 06:20:08 | 显示全部楼层
Evidence-Driven Differential Diagnosis of Malignant Melanomaof information. Validation results using the SIIM-ISIC 2020 dataset indicate including the lesion context with location and metadata improves specificity by . and ., respectively, while enhancing balanced accuracy. The code is available at ..
发表于 2025-3-27 10:05:45 | 显示全部楼层
Gradient Self-alignment in Private Deep Learningient by increasing their cosine similarity. Optimizing the alignment in only a relevant subset of gradient dimensions, further improves the performance. We evaluate our method on CIFAR-10 and a pediatric pneumonia chest x-ray dataset.
发表于 2025-3-27 14:00:33 | 显示全部楼层
Input Augmentation with SAM: Boosting Medical Image Segmentation with Segmentation Foundation Modelntation models. In particular, we demonstrate how to use SAM to augment image input for commonly-used medical image segmentation models (e.g., U-Net). Experiments on three segmentation tasks show the effectiveness of our proposed SAMAug method.
发表于 2025-3-27 19:21:00 | 显示全部楼层
Empirical Analysis of a Segmentation Foundation Model in Prostate Imagingvaluation study in the context of prostate imaging and compare it against the conventional approach of training a task-specific segmentation model. Our results and discussion highlight several important factors that will likely be important in the development and adoption of foundation models for medical image segmentation.
发表于 2025-3-27 22:12:10 | 显示全部楼层
发表于 2025-3-28 04:27:29 | 显示全部楼层
https://doi.org/10.1007/978-3-031-47401-9Artificial Intelligence; Computer Vision; Machine Learning; Medical Imaging; Explainability; Privacy-Pres
发表于 2025-3-28 09:31:08 | 显示全部楼层
发表于 2025-3-28 12:08:54 | 显示全部楼层
978-3-031-47400-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 02:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表