找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[复制链接]
楼主: Traction
发表于 2025-3-28 16:33:10 | 显示全部楼层
发表于 2025-3-28 20:35:39 | 显示全部楼层
Zhiyun Song,Xin Wang,Xiangyu Zhao,Sheng Wang,Zhenrong Shen,Zixu Zhuang,Mengjun Liu,Qian Wang,Lichi Zkt der Resilienz das vorletzte Kapitel gewidmet, bevor sich ein Ausblick in die Zukunft anschließt. .Die didaktische Struktur des Lehrbuchs enthält neben Lernzielen, Praxisbeispielen und Fallstudien sowie Lernv978-3-658-42338-4978-3-658-42339-1
发表于 2025-3-29 01:28:13 | 显示全部楼层
Hadrien Reynaud,Mengyun Qiao,Mischa Dombrowski,Thomas Day,Reza Razavi,Alberto Gomez,Paul Leeson,Bernhe study area for assessing this approach is Louisiana (United States), which – being spatially quite diverse – has been intensively shaped for more than a century by the activities of the petrochemical industr978-3-658-43395-6978-3-658-43396-3Series ISSN 2625-6991 Series E-ISSN 2625-7009
发表于 2025-3-29 05:46:45 | 显示全部楼层
Yongsheng Pan,Feihong Liu,Caiwen Jiang,Jiawei Huang,Yong Xia,Dinggang Shen
发表于 2025-3-29 07:31:15 | 显示全部楼层
发表于 2025-3-29 11:23:39 | 显示全部楼层
Huidong Xie,Bo Zhou,Xiongchao Chen,Xueqi Guo,Stephanie Thorn,Yi-Hwa Liu,Ge Wang,Albert Sinusas,Chi L
发表于 2025-3-29 18:16:59 | 显示全部楼层
CDiffMR: Can We Replace the Gaussian Noise with K-Space Undersampling for Fast MRI?ave gained burgeoning interests as a novel group of deep learning-based generative methods. These methods seek to sample data points that belong to a target distribution from a Gaussian distribution, which has been successfully extended to MRI reconstruction. In this work, we proposed a Cold Diffusi
发表于 2025-3-29 19:50:21 | 显示全部楼层
Learning Deep Intensity Field for Extremely Sparse-View CBCT Reconstructionsed generation methods represent the CT as discrete voxels, resulting in high memory requirements and limited spatial resolution due to the use of 3D decoders. In this paper, we formulate the CT volume as a continuous intensity field and develop a novel DIF-Net to perform high-quality CBCT reconstru
发表于 2025-3-30 02:42:51 | 显示全部楼层
发表于 2025-3-30 07:36:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 11:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表