找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[复制链接]
楼主: Opiate
发表于 2025-3-30 10:19:01 | 显示全部楼层
rom the thematic hook “organization and knowledge” to the various theoretical perspectives. The concept of knowledge has gained much popularity in the organizational discourse of recent years, both in the context of popular and practically oriented management and organizational doctrines as well as
发表于 2025-3-30 14:58:09 | 显示全部楼层
Yiming Qian,Liangzhi Li,Huazhu Fu,Meng Wang,Qingsheng Peng,Yih Chung Tham,Chingyu Cheng,Yong Liu,Ricen und damit in der Verwendung von Macht kommt: Dabei gewinnt vor allem die Orientierung an Person und Gruppe massiv an Bedeutung. Auf eine Kurzformel gebracht bedeutet dies: Erfolgreiche Führung muss neben der Organisationsdynamik eine Expertise für die Gruppendynamik entwickeln. Allerdings stehen
发表于 2025-3-30 19:31:49 | 显示全部楼层
发表于 2025-3-31 00:28:59 | 显示全部楼层
SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentationbel-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from li
发表于 2025-3-31 02:22:11 | 显示全部楼层
COLosSAL: A Benchmark for Cold-Start Active Learning for 3D Medical Image Segmentationmance when trained on a fully-annotated dataset. However, data annotation is often a significant bottleneck, especially for 3D medical images. Active learning (AL) is a promising solution for efficient annotation but requires an initial set of labeled samples to start active selection. When the enti
发表于 2025-3-31 07:01:56 | 显示全部楼层
发表于 2025-3-31 11:41:36 | 显示全部楼层
发表于 2025-3-31 16:30:40 | 显示全部楼层
PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultraod that measures its thickness and roughness during routine ultrasound scans. Although advanced deep learning technology has shown promise in enabling automatic and accurate medical image segmentation, the lack of a large quantity of high-quality CIM labels may hinder the model training process. Act
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 06:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表