找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[复制链接]
查看: 11537|回复: 63
发表于 2025-3-21 20:06:24 | 显示全部楼层 |阅读模式
书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022
副标题25th International C
编辑Linwei Wang,Qi Dou,Shuo Li
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee
描述The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022..The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections:.Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology;.Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging;.Part III: Breast imaging; colonoscopy; computer aided diagnosis;.Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I;.Part V: Image segmentation II; integration of imaging with non-imaging biomarkers;.Part VI: Image registration; image reconstruction;.Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; mach
出版日期Conference proceedings 2022
关键词artificial intelligence; bioinformatics; computer vision; decision support systems; image analysis; image
版次1
doihttps://doi.org/10.1007/978-3-031-16443-9
isbn_softcover978-3-031-16442-2
isbn_ebook978-3-031-16443-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022影响因子(影响力)




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022影响因子(影响力)学科排名




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022网络公开度




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022网络公开度学科排名




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022被引频次




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022被引频次学科排名




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022年度引用




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022年度引用学科排名




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022读者反馈




书目名称Medical Image Computing and Computer Assisted Intervention – MICCAI 2022读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:10:24 | 显示全部楼层
发表于 2025-3-22 03:00:52 | 显示全部楼层
UNeXt: MLP-Based Rapid Medical Image Segmentation Network be effectively adopted for rapid image segmentation in point-of-care applications as they are parameter-heavy, computationally complex and slow to use. To this end, we propose UNeXt which is a Convolutional multilayer perceptron (MLP) based network for image segmentation. We design UNeXt in an effe
发表于 2025-3-22 06:19:19 | 显示全部楼层
Exploring Smoothness and Class-Separation for Semi-supervised Medical Image Segmentationred pixels near the adhesive edges or in the low-contrast regions. To address the issues, we advocate to firstly constrain the consistency of pixels with and without strong perturbations to apply a sufficient smoothness constraint and further encourage the class-level separation to exploit the low-e
发表于 2025-3-22 11:51:40 | 显示全部楼层
Uncertainty-Guided Lung Nodule Segmentation with Feature-Aware Attention studies choose a single annotation as the learning target by default, but they waste valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Guided Segmentation Network (UGS-Net), which learns the rich visual features from the reg
发表于 2025-3-22 13:15:20 | 显示全部楼层
Thoracic Lymph Node Segmentation in CT Imaging via Lymph Node Station Stratification and Size Encodiology and oncology workflows. The high demanding of clinical expertise and prohibitive laboring cost motivate the automated approaches. Previous works focus on extracting effective LN imaging features and/or exploiting the anatomical priors to help LN segmentation. However, the performance in genera
发表于 2025-3-22 19:52:28 | 显示全部楼层
发表于 2025-3-23 00:39:59 | 显示全部楼层
发表于 2025-3-23 02:56:27 | 显示全部楼层
Stroke Lesion Segmentation from Low-Quality and Few-Shot MRIs via Similarity-Weighted Self-ensemblinsegmentation methods have the great potential to improve the medical resource imbalance and reduce stroke risk in these countries, existing segmentation studies are difficult to be deployed in these low-resource settings because they have such high requirements for the data amount (plenty-shot) and
发表于 2025-3-23 08:54:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 07:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表