找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[复制链接]
楼主: 爆裂
发表于 2025-3-26 21:39:11 | 显示全部楼层
MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PETost current deep learning inter-frame motion correction works consider only the image registration problem, ignoring tracer kinetics. We propose an inter-frame Motion Correction framework with Patlak regularization (MCP-Net) to directly optimize the Patlak fitting error and further improve model per
发表于 2025-3-27 02:15:11 | 显示全部楼层
PET Denoising and Uncertainty Estimation Based on NVAE Model Using Quantile Regression Lossme from their uncertainty. As data-driven models, deep learning-based methods are sensitive to imperfect data. Thus, it is important to quantify the uncertainty, especially for positron emission tomography (PET) denoising tasks where the noise is very similar to small tumors. In this paper, we propo
发表于 2025-3-27 06:55:01 | 显示全部楼层
发表于 2025-3-27 10:31:36 | 显示全部楼层
发表于 2025-3-27 16:17:49 | 显示全部楼层
Semi-supervised Learning for Nerve Segmentation in Corneal Confocal Microscope Photographyge modeling as a proxy task on unlabeled images. After supervised fine-tuning, self-training is employed to make full use of unlabeled data. Experimental results show that our proposed method is effective and better than the supervised learning using nerve annotations with three-pixel-width dilation.
发表于 2025-3-27 20:22:42 | 显示全部楼层
发表于 2025-3-28 01:59:23 | 显示全部楼层
https://doi.org/10.1007/978-3-031-16440-8Computer Science; Informatics; Conference Proceedings; Research; Applications
发表于 2025-3-28 04:30:20 | 显示全部楼层
发表于 2025-3-28 08:35:56 | 显示全部楼层
978-3-031-16439-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-28 10:43:49 | 显示全部楼层
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022978-3-031-16440-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 11:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表