找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018; 21st International C Alejandro F. Frangi,Julia A. Schnabel,Gabor

[复制链接]
楼主: firearm
发表于 2025-3-30 08:21:38 | 显示全部楼层
Can Deep Learning Relax Endomicroscopy Hardware Miniaturization Requirements?e been made to develop miniaturized . imaging devices, specifically confocal laser microscopes, for both clinical and research applications. However, current implementations of miniature CLE components such as confocal lenses compromise image resolution, signal-to-noise ratio, or both, which negativ
发表于 2025-3-30 14:01:16 | 显示全部楼层
发表于 2025-3-30 20:19:52 | 显示全部楼层
发表于 2025-3-31 00:37:19 | 显示全部楼层
A No-Reference Quality Metric for Retinal Vessel Tree Segmentationios, the ability to automatically assess the quality of predictions when no expert annotation is available can be critical. In this paper, we propose a new method for quality assessment of retinal vessel tree segmentations in the absence of a reference ground-truth. For this, we artificially degrade
发表于 2025-3-31 00:55:39 | 显示全部楼层
发表于 2025-3-31 06:37:58 | 显示全部楼层
A Deep Learning Based Anti-aliasing Self Super-Resolution Algorithm for MRIio requires a long time, making them costly and susceptible to motion artifacts. A common way to partly achieve this goal is to acquire MR images with good in-plane resolution and poor through-plane resolution (i.e., large slice thickness). For such 2D imaging protocols, aliasing is also introduced
发表于 2025-3-31 10:54:32 | 显示全部楼层
发表于 2025-3-31 14:28:16 | 显示全部楼层
Deeper Image Quality Transfer: Training Low-Memory Neural Networks for 3D Imagesarning. We exploit memory-efficient backpropagation techniques, to reduce the memory complexity of network training from being linear in the network’s depth, to being roughly constant – permitting us to elongate deep architectures with negligible memory increase. We evaluate our methodology in the p
发表于 2025-3-31 18:04:04 | 显示全部楼层
发表于 2025-4-1 00:12:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 17:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表