找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Maximum Entropy and Bayesian Methods; Boise, Idaho, USA, 1 Gary J. Erickson,Joshua T. Rychert,C. Ray Smith Conference proceedings 1998 Spri

[复制链接]
楼主: detumescence
发表于 2025-3-23 13:06:07 | 显示全部楼层
发表于 2025-3-23 15:15:59 | 显示全部楼层
发表于 2025-3-23 21:56:31 | 显示全部楼层
发表于 2025-3-24 01:23:18 | 显示全部楼层
发表于 2025-3-24 04:55:52 | 显示全部楼层
发表于 2025-3-24 08:54:41 | 显示全部楼层
发表于 2025-3-24 14:32:58 | 显示全部楼层
发表于 2025-3-24 16:15:09 | 显示全部楼层
Integrated Deformable Boundary Finding Using Bayesian Strategies,tion is achieved in this work by using region information in addition to gradient information within the deformable boundary finding framework. The integration problem is framed in a Bayesian framework using shape and region priors to influence a gradient-based deformable boundary finding.
发表于 2025-3-24 21:41:00 | 显示全部楼层
Shape Reconstruction in X-Ray Tomography from a Small Number of Projections Using Deformable Modelsolygonal shapes with very small number of vertices, snakes and deformable templates) and these parameters are estimated either by least squares or by maximum likelihood methods. We propose modeling the shape of the fault region by a polygon with a large number of vertices, allowing modeling of nearl
发表于 2025-3-25 01:17:00 | 显示全部楼层
Difficulties Applying Recent Blind Source Separation Techniques to EEG and MEG,ineffective when applied to EEG or MEG signals. Many of these techniques implicitly assume that the source distributions have a large kurtosis, whereas an analysis of EEG/MEG signals reveals that the distributions are multimodal. This suggests that more effective separation techniques could be desig
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 22:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表