找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Matrix and Tensor Factorization Techniques for Recommender Systems; Panagiotis Symeonidis,Andreas Zioupos Book 2016 The Editor(s) (if appl

[复制链接]
查看: 46581|回复: 43
发表于 2025-3-21 16:31:30 | 显示全部楼层 |阅读模式
书目名称Matrix and Tensor Factorization Techniques for Recommender Systems
编辑Panagiotis Symeonidis,Andreas Zioupos
视频video
概述Covers all emerging tasks and cutting-edge techniques in matrix and tensor factorization for recommender systems.Offers a rich blend of mathematical theory and practice for matrix and tensor decomposi
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Matrix and Tensor Factorization Techniques for Recommender Systems;  Panagiotis Symeonidis,Andreas Zioupos Book 2016 The Editor(s) (if appl
描述.This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. . .The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, reco
出版日期Book 2016
关键词Recommender Systems; Information Retrieval; Factorization Methods; Machine Learning; Matrix Factorizatio
版次1
doihttps://doi.org/10.1007/978-3-319-41357-0
isbn_softcover978-3-319-41356-3
isbn_ebook978-3-319-41357-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Matrix and Tensor Factorization Techniques for Recommender Systems影响因子(影响力)




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems影响因子(影响力)学科排名




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems网络公开度




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems网络公开度学科排名




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems被引频次




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems被引频次学科排名




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems年度引用




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems年度引用学科排名




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems读者反馈




书目名称Matrix and Tensor Factorization Techniques for Recommender Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:43:04 | 显示全部楼层
2191-5768 blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, reco978-3-319-41356-3978-3-319-41357-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-22 01:07:03 | 显示全部楼层
ies eine vollständige Aufzählung sein könnte. Überhaupt ist die Entstehung der Theorie der Splines ein Beispiel für eine Entwicklung, die durch praktische Erfordernisse ins Leben gerufen wurde. Diese praktischen Erfordernisse bestanden damals in der Notwendigkeit, über anwendbare Methoden zur glatte
发表于 2025-3-22 07:36:50 | 显示全部楼层
发表于 2025-3-22 12:14:48 | 显示全部楼层
Matrix and Tensor Factorization Techniques for Recommender Systems
发表于 2025-3-22 14:12:51 | 显示全部楼层
Introduction, and information retrieval. Recommender systems deal with challenging issues such as scalability, noise, and sparsity and thus, matrix and tensor factorization techniques appear as an interesting tool to be exploited. That is, we can deal with all aforementioned challenges by applying matrix and te
发表于 2025-3-22 18:47:05 | 显示全部楼层
Related Work on Matrix Factorizationion, which decomposes the initial matrix into a canonical form. The second method is nonnegative matrix factorization (NMF), which factorizes the initial matrix into two smaller matrices with the constraint that each element of the factorized matrices should be nonnegative. The third method is laten
发表于 2025-3-23 01:04:23 | 显示全部楼层
Performing SVD on Matrices and Its Extensionsal background and present (step by step) the SVD method using a toy example of a recommender system. We also describe in detail UV decomposition. This method is an instance of SVD, as we mathematically prove. We minimize an objective function, which captures the error between the predicted and real
发表于 2025-3-23 01:49:56 | 显示全部楼层
Experimental Evaluation on Matrix Decomposition Methodsalgorithm combined with SVD. For the UV decomposition method, we will present the appropriate tuning of parameters of its objective function to have an idea of how we can get optimized values of its parameters. We will also answer the question if these values are generally accepted or they should be
发表于 2025-3-23 06:30:40 | 显示全部楼层
Related Work on Tensor Factorizationrst method that is discussed is the Tucker Decomposition (TD) method, which is the underlying tensor factorization model of Higher Order Singular Value Decomposition. TD decomposes a tensor into a set of matrices and one small core tensor. The second one is the PARAFAC method (PARAllel FACtor analys
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 04:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表