找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Matrices, Statistics and Big Data; Selected Contributio S. Ejaz Ahmed,Francisco Carvalho,Simo Puntanen Conference proceedings 2019 Springer

[复制链接]
查看: 44403|回复: 52
发表于 2025-3-21 16:42:49 | 显示全部楼层 |阅读模式
书目名称Matrices, Statistics and Big Data
副标题Selected Contributio
编辑S. Ejaz Ahmed,Francisco Carvalho,Simo Puntanen
视频video
概述Presents the latest advances in matrix theory and statistics.Includes methods for solving big data problems.Features contributions by leading experts in the area
丛书名称Contributions to Statistics
图书封面Titlebook: Matrices, Statistics and Big Data; Selected Contributio S. Ejaz Ahmed,Francisco Carvalho,Simo Puntanen Conference proceedings 2019 Springer
描述.This volume features selected, refereed papers on various aspects of statistics, matrix theory and its applications to statistics, as well as related numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributions were originally presented at the 25th International Workshop on Matrices and Statistics (IWMS 2016), held in Funchal (Madeira), Portugal on June 6-9, 2016. .The IWMS workshop series brings together statisticians, computer scientists, data scientists and mathematicians, helping them better understand each other’s tools, and fostering new collaborations at the interface of matrix theory and statistics..
出版日期Conference proceedings 2019
关键词Statistical models; Matrix theory; Linear algebra; Big data analytics; Numerical linear algebra; Multivar
版次1
doihttps://doi.org/10.1007/978-3-030-17519-1
isbn_softcover978-3-030-17521-4
isbn_ebook978-3-030-17519-1Series ISSN 1431-1968 Series E-ISSN 2628-8966
issn_series 1431-1968
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Matrices, Statistics and Big Data影响因子(影响力)




书目名称Matrices, Statistics and Big Data影响因子(影响力)学科排名




书目名称Matrices, Statistics and Big Data网络公开度




书目名称Matrices, Statistics and Big Data网络公开度学科排名




书目名称Matrices, Statistics and Big Data被引频次




书目名称Matrices, Statistics and Big Data被引频次学科排名




书目名称Matrices, Statistics and Big Data年度引用




书目名称Matrices, Statistics and Big Data年度引用学科排名




书目名称Matrices, Statistics and Big Data读者反馈




书目名称Matrices, Statistics and Big Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:47:51 | 显示全部楼层
Conference proceedings 2019 numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributions were originally presented at the 25th International Workshop on Matrices and Statistics (IWMS 2016), held in Funchal (Madeira), Portugal on June 6
发表于 2025-3-22 03:48:25 | 显示全部楼层
Hybrid Model for Recurrent Event Data,ch subject) which is common in this type of data..In this chapter we present a new model, which we call hybrid model, with the purpose of minimizing some limitations of PWP model. With this model we obtained an improvement in the precision of the parameters estimates and a better fit to the simulated data.
发表于 2025-3-22 05:48:04 | 显示全部楼层
发表于 2025-3-22 10:37:15 | 显示全部楼层
,Ingram Olkin (1924–2016): An Appreciation for a People Person,e words of his daughter Julia Olkin [.].Richard W. Cottle, Professor Emeritus of Management Science & Engineering and a close friend of Olkin, said [.]:.In the conversation part of the . [.], Ingram described himself:.We deeply miss you, a truly outstanding and unforgettable ., Ingram Olkin.
发表于 2025-3-22 16:30:30 | 显示全部楼层
发表于 2025-3-22 20:28:30 | 显示全部楼层
Covariance Matrix Regularization for Banded Toeplitz Structure via Frobenius-Norm Discrepancy,ind .. Our simulation studies show that . is also more accurate than the sample covariance matrix . when estimating the covariance matrix . that has a banded Toeplitz structure. The studies also show that the proposed method works very well in regularization of covariance structure.
发表于 2025-3-22 22:44:29 | 显示全部楼层
发表于 2025-3-23 03:41:55 | 显示全部楼层
发表于 2025-3-23 08:49:12 | 显示全部楼层
Some Issues in Generalized Linear Modeling,and confidence intervals, (4) a question about the behavior of residuals for generalized linear models, and (5) a new approach in using generalized estimating equations (GEE) methods for marginal multinomial models.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 19:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表