用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Matrices; Theory and Applicati Denis Serre Textbook 20021st edition Springer Science+Business Media New York 2002 Eigenvalue.Matrix.algebra

[复制链接]
查看: 48196|回复: 47
发表于 2025-3-21 18:55:09 | 显示全部楼层 |阅读模式
书目名称Matrices
副标题Theory and Applicati
编辑Denis Serre
视频video
概述Includes supplementary material:
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Matrices; Theory and Applicati Denis Serre Textbook 20021st edition Springer Science+Business Media New York 2002 Eigenvalue.Matrix.algebra
描述.In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering...The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Supérieure de Lyon..
出版日期Textbook 20021st edition
关键词Eigenvalue; Matrix; algebra; matrices; numerical analysis; matrix theory
版次1
doihttps://doi.org/10.1007/b98899
isbn_ebook978-0-387-22758-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Matrices影响因子(影响力)




书目名称Matrices影响因子(影响力)学科排名




书目名称Matrices网络公开度




书目名称Matrices网络公开度学科排名




书目名称Matrices被引频次




书目名称Matrices被引频次学科排名




书目名称Matrices年度引用




书目名称Matrices年度引用学科排名




书目名称Matrices读者反馈




书目名称Matrices读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:57:39 | 显示全部楼层
Square Matrices,it is useful to consider matrices with entries in a ring. This allows us to consider matrices with entries in ℤ (rational integers) as well as in .[.] (polynomials with coefficients in .). We shall assume that the ring . of scalars is a commutative (meaning that the multiplication is commutative) in
发表于 2025-3-22 00:23:06 | 显示全部楼层
发表于 2025-3-22 05:39:45 | 显示全部楼层
Norms, the eigenvalues of .: .When . =ℝ, one takes into account the complex eigenvalues when computing .(.)..The scalar (if . =ℝ) or Hermitian (if . =ℂ) product on . is denoted by .. The vector space . is endowed with various norms, pairwise equivalent since . has finite dimension (Proposition 4.1.3 below
发表于 2025-3-22 12:47:25 | 显示全部楼层
发表于 2025-3-22 16:10:05 | 显示全部楼层
发表于 2025-3-22 20:14:46 | 显示全部楼层
Matrix Factorizations,many times with various values of b. In the next chapter we shall study iterative methods for the case .=ℝ or ℂ. Here we concentrate on a simple idea: To decompose . as a product . in such a way that the resolution of the intermediate systems . = . and . = . is “cheap”. In general, at least one of t
发表于 2025-3-22 22:48:24 | 显示全部楼层
Iterative Methods for Linear Problems,. is invertible. For example, if . admits an . factorization, the successive resolution of . = ., . = . is called the .. When a leading principal minor of . vanishes, a permutation of the columns allows us to return to the generic case. More generally, the Gauss method with pivoting consists in perm
发表于 2025-3-23 02:58:13 | 显示全部楼层
Approximation of Eigenvalues,ute the characteristic polynomial and then find its roots, turns out to be hopeless because of Abel’s theorem, which states that the general equation . = 0, where . is a polynomial of degree . ≥ 5, is not solvable using algebraic operations and roots of any order. For this reason, there e xists no d
发表于 2025-3-23 08:23:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-17 00:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表