找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical and Computational Oncology; Second International George Bebis,Max Alekseyev,Maria Rodriguez Martine Conference proceedings 202

[复制链接]
查看: 8088|回复: 48
发表于 2025-3-21 17:01:37 | 显示全部楼层 |阅读模式
书目名称Mathematical and Computational Oncology
副标题Second International
编辑George Bebis,Max Alekseyev,Maria Rodriguez Martine
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Mathematical and Computational Oncology; Second International George Bebis,Max Alekseyev,Maria Rodriguez Martine Conference proceedings 202
描述This book constitutes the refereed proceedings of the Second International Symposium on Mathematical and Computational Oncology, ISMCO 2020, which was supposed to be held in San Diego, CA, USA, in October 2020, but was instead held virtually due to the COVID-19 pandemic..The 6 full papers and 4 short papers presented together with 1 invited talk were carefully reviewed and selected from 28 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; general cancer computational biology; and posters..
出版日期Conference proceedings 2020
关键词artificial intelligence; bioinformatics; computational methods for anticancer drug development; compute
版次1
doihttps://doi.org/10.1007/978-3-030-64511-3
isbn_softcover978-3-030-64510-6
isbn_ebook978-3-030-64511-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Mathematical and Computational Oncology影响因子(影响力)




书目名称Mathematical and Computational Oncology影响因子(影响力)学科排名




书目名称Mathematical and Computational Oncology网络公开度




书目名称Mathematical and Computational Oncology网络公开度学科排名




书目名称Mathematical and Computational Oncology被引频次




书目名称Mathematical and Computational Oncology被引频次学科排名




书目名称Mathematical and Computational Oncology年度引用




书目名称Mathematical and Computational Oncology年度引用学科排名




书目名称Mathematical and Computational Oncology读者反馈




书目名称Mathematical and Computational Oncology读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:10 | 显示全部楼层
发表于 2025-3-22 01:59:01 | 显示全部楼层
发表于 2025-3-22 07:50:56 | 显示全部楼层
发表于 2025-3-22 12:19:13 | 显示全部楼层
发表于 2025-3-22 14:22:59 | 显示全部楼层
Fine-Tuning Deep Learning Architectures for Early Detection of Oral Cancern pre-trained deep convolutional neural network architectures compared for the task of fine-tuning to a small oral image dataset. Improvements to our previous work were made, with an accuracy of 80.88% achieved and a corresponding sensitivity of 85.71% and specificity of 76.42%.
发表于 2025-3-22 18:47:52 | 显示全部楼层
tugHall: A Tool to Reproduce Darwinian Evolution of Cancer Cells for Simulation-Based Personalized Mof the model. The variant allele frequencies are used as target data for the analysis. In tugHall 2.1, the Darwinian evolutionary competition amongst different clones is computed due to clone’s death/birth processes. The open-source code is available in the repository ..
发表于 2025-3-22 23:50:02 | 显示全部楼层
发表于 2025-3-23 02:11:45 | 显示全部楼层
发表于 2025-3-23 05:40:23 | 显示全部楼层
Discriminative Localized Sparse Representations for Breast Cancer Screeningignant. The performance of our method in conjunction with LC-KSVD dictionary learning is evaluated using 10-, 20-, and 30-fold cross validation on the MIAS dataset. Our results indicate that the proposed sparse analyses may be a useful component for breast cancer screening applications.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 12:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表