找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Principles of Topological and Geometric Data Analysis; Parvaneh Joharinad,Jürgen Jost Textbook 2023 The Editor(s) (if applica

[复制链接]
查看: 48688|回复: 46
发表于 2025-3-21 17:45:31 | 显示全部楼层 |阅读模式
书目名称Mathematical Principles of Topological and Geometric Data Analysis
编辑Parvaneh Joharinad,Jürgen Jost
视频video
概述The first book to develop the geometric foundations of manifold learning.Provides the mathematical prerequisites for the dimension reduction techniques of machine learning.General notion of curvature
丛书名称Mathematics of Data
图书封面Titlebook: Mathematical Principles of Topological and Geometric Data Analysis;  Parvaneh Joharinad,Jürgen Jost Textbook 2023 The Editor(s) (if applica
描述.This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information..In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with somekind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately..Pri
出版日期Textbook 2023
关键词Riemannian geometry; Laplace operators; homology; category theory; Dimension reduction; Kernel technique;
版次1
doihttps://doi.org/10.1007/978-3-031-33440-5
isbn_softcover978-3-031-33442-9
isbn_ebook978-3-031-33440-5Series ISSN 2731-4103 Series E-ISSN 2731-4111
issn_series 2731-4103
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Mathematical Principles of Topological and Geometric Data Analysis影响因子(影响力)




书目名称Mathematical Principles of Topological and Geometric Data Analysis影响因子(影响力)学科排名




书目名称Mathematical Principles of Topological and Geometric Data Analysis网络公开度




书目名称Mathematical Principles of Topological and Geometric Data Analysis网络公开度学科排名




书目名称Mathematical Principles of Topological and Geometric Data Analysis被引频次




书目名称Mathematical Principles of Topological and Geometric Data Analysis被引频次学科排名




书目名称Mathematical Principles of Topological and Geometric Data Analysis年度引用




书目名称Mathematical Principles of Topological and Geometric Data Analysis年度引用学科排名




书目名称Mathematical Principles of Topological and Geometric Data Analysis读者反馈




书目名称Mathematical Principles of Topological and Geometric Data Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:59:00 | 显示全部楼层
发表于 2025-3-22 02:29:42 | 显示全部楼层
发表于 2025-3-22 04:59:22 | 显示全部楼层
发表于 2025-3-22 11:31:04 | 显示全部楼层
Mathematical Principles of Topological and Geometric Data Analysis978-3-031-33440-5Series ISSN 2731-4103 Series E-ISSN 2731-4111
发表于 2025-3-22 16:31:57 | 显示全部楼层
发表于 2025-3-22 19:27:21 | 显示全部楼层
Weighted Complexes, Cohomology and Laplace Operators,tors and their adjoints, Laplace type operators. The spectrum of a Laplace operator will encode important properties of the underlying geometric object, and therefore, in this chapter, we develop the spectral theory of such operators in an abstract manner.
发表于 2025-3-22 22:18:57 | 显示全部楼层
发表于 2025-3-23 02:31:20 | 显示全部楼层
Metrics and Curvature, Our notion is very abstract and therefore also naturally applies to discrete metric spaces, as naturally emerging from data. We conclude by presenting a construction of a simplicial complex (typically infinite-dimensional) that as a topological object encodes all geometric properties of the metric that we want to represent.
发表于 2025-3-23 08:57:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 15:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表