找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Models for Remote Sensing Image Processing; Models and Methods f Gabriele Moser,Josiane Zerubia Book 2018 Springer Internation

[复制链接]
查看: 49096|回复: 46
发表于 2025-3-21 17:28:56 | 显示全部楼层 |阅读模式
书目名称Mathematical Models for Remote Sensing Image Processing
副标题Models and Methods f
编辑Gabriele Moser,Josiane Zerubia
视频video
概述Is devoted to fundamentals and applications of modern methods of signal processing and cutting-edge communication technologies.Includes major topics such as information and signal theory, acoustic sig
丛书名称Signals and Communication Technology
图书封面Titlebook: Mathematical Models for Remote Sensing Image Processing; Models and Methods f Gabriele Moser,Josiane Zerubia Book 2018 Springer Internation
描述.This book maximizes reader insights into the field of mathematical models and methods for the processing of two-dimensional remote sensing images. It presents a broad analysis of the field, encompassing passive and active sensors, hyperspectral images, synthetic aperture radar (SAR), interferometric SAR, and polarimetric SAR data. At the same time, it addresses highly topical subjects involving remote sensing data types (e.g., very high-resolution images, multiangular or multiresolution data, and satellite image time series) and analysis methodologies (e.g., probabilistic graphical models, hierarchical image representations, kernel machines, data fusion, and compressive sensing) that currently have primary importance in the field of mathematical modelling for remote sensing and image processing. Each chapter focuses on a particular type of remote sensing data and/or on a specific methodological area, presenting both a thorough analysis of the previous literature and a methodologicaland experimental discussion of at least two advanced mathematical methods for information extraction from remote sensing data. This organization ensures that both tutorial information and advanced subje
出版日期Book 2018
关键词Aerial imagery; Image processing; Mathematical modelling; Remote Sensing; Satellite imagery; remote sensi
版次1
doihttps://doi.org/10.1007/978-3-319-66330-2
isbn_softcover978-3-319-88219-2
isbn_ebook978-3-319-66330-2Series ISSN 1860-4862 Series E-ISSN 1860-4870
issn_series 1860-4862
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Mathematical Models for Remote Sensing Image Processing影响因子(影响力)




书目名称Mathematical Models for Remote Sensing Image Processing影响因子(影响力)学科排名




书目名称Mathematical Models for Remote Sensing Image Processing网络公开度




书目名称Mathematical Models for Remote Sensing Image Processing网络公开度学科排名




书目名称Mathematical Models for Remote Sensing Image Processing被引频次




书目名称Mathematical Models for Remote Sensing Image Processing被引频次学科排名




书目名称Mathematical Models for Remote Sensing Image Processing年度引用




书目名称Mathematical Models for Remote Sensing Image Processing年度引用学科排名




书目名称Mathematical Models for Remote Sensing Image Processing读者反馈




书目名称Mathematical Models for Remote Sensing Image Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:08:03 | 显示全部楼层
发表于 2025-3-22 01:16:35 | 显示全部楼层
发表于 2025-3-22 05:33:59 | 显示全部楼层
发表于 2025-3-22 11:38:03 | 显示全部楼层
Remote Sensing Data Fusion: Guided Filter-Based Hyperspectral Pansharpening and Graph-Based Featured/fused together, provide a more comprehensive interpretation of land cover/use (urban and climatic changes), natural disasters (floods, hurricanes, and earthquakes), and potential exploitation (oil fields and minerals). However, automatic interpretation of remote sensing data remains challenging. T
发表于 2025-3-22 13:04:06 | 显示全部楼层
发表于 2025-3-22 20:16:26 | 显示全部楼层
发表于 2025-3-23 00:35:14 | 显示全部楼层
发表于 2025-3-23 04:14:16 | 显示全部楼层
发表于 2025-3-23 08:22:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 10:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表