找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Foundations for Data Analysis; Jeff M. Phillips Textbook 2021 Springer Nature Switzerland AG 2021 Data Analysis.Data Sciences

[复制链接]
查看: 20370|回复: 44
发表于 2025-3-21 18:04:22 | 显示全部楼层 |阅读模式
书目名称Mathematical Foundations for Data Analysis
编辑Jeff M. Phillips
视频video
概述Provides accessible, simplified introduction to core mathematical language and concepts.Integrates examples of key concepts through geometric illustrations and Python coding.Addresses topics in locali
丛书名称Springer Series in the Data Sciences
图书封面Titlebook: Mathematical Foundations for Data Analysis;  Jeff M. Phillips Textbook 2021 Springer Nature Switzerland AG 2021 Data Analysis.Data Sciences
描述.This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra.  Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques..
出版日期Textbook 2021
关键词Data Analysis; Data Sciences; Data Mining; Machine Learning; Probability; Neural Networks; Geometry of Dat
版次1
doihttps://doi.org/10.1007/978-3-030-62341-8
isbn_softcover978-3-030-62343-2
isbn_ebook978-3-030-62341-8Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Mathematical Foundations for Data Analysis影响因子(影响力)




书目名称Mathematical Foundations for Data Analysis影响因子(影响力)学科排名




书目名称Mathematical Foundations for Data Analysis网络公开度




书目名称Mathematical Foundations for Data Analysis网络公开度学科排名




书目名称Mathematical Foundations for Data Analysis被引频次




书目名称Mathematical Foundations for Data Analysis被引频次学科排名




书目名称Mathematical Foundations for Data Analysis年度引用




书目名称Mathematical Foundations for Data Analysis年度引用学科排名




书目名称Mathematical Foundations for Data Analysis读者反馈




书目名称Mathematical Foundations for Data Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:42:59 | 显示全部楼层
Convergence and Sampling,rk to think about how to aggregate more and more data to get better and better estimates. It will cover the . (CLT), Chernoff-Hoeffding bounds, Probably Approximately Correct (PAC) algorithms, as well as analysis of importance sampling techniques which improve the concentration of random samples.
发表于 2025-3-22 02:25:52 | 显示全部楼层
Distances and Nearest Neighbors,nd and the algorithms used. However, there are an enormous number of distances to choose from. We attempt to survey those most common within data analysis. This chapter also provides an overview of the most important properties of distances (e.g., is it a metric?) and how they are related to the dua
发表于 2025-3-22 05:12:25 | 显示全部楼层
发表于 2025-3-22 09:26:02 | 显示全部楼层
发表于 2025-3-22 14:43:52 | 显示全部楼层
发表于 2025-3-22 19:32:39 | 显示全部楼层
Clustering,re quite messy. And many techniques for clustering actually lack a mathematical formulation. We will initially focus on what is probably the cleanest and most used formulation: assignment-based clustering which includes .-center and the notorious .-means clustering. For background, we will begin wit
发表于 2025-3-22 23:58:39 | 显示全部楼层
发表于 2025-3-23 01:39:36 | 显示全部楼层
发表于 2025-3-23 05:50:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 03:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表