找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Foundation of Turbulent Viscous Flows; Lectures given at th Marco Cannone,Tetsuro Miyakawa Book 2006 Springer-Verlag Berlin He

[复制链接]
查看: 53778|回复: 35
发表于 2025-3-21 16:51:58 | 显示全部楼层 |阅读模式
书目名称Mathematical Foundation of Turbulent Viscous Flows
副标题Lectures given at th
编辑Marco Cannone,Tetsuro Miyakawa
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Mathematical Foundation of Turbulent Viscous Flows; Lectures given at th Marco Cannone,Tetsuro Miyakawa Book 2006 Springer-Verlag Berlin He
描述.Constantin .presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in .Gallavotti.‘s lectures. .Kazhikhov. introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. .Y. Meyer. focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. .Ukai. discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers..
出版日期Book 2006
关键词Boltzmann equation; Fourier analysis; Navier-Stokes equation; fluid mechanics; partial differential equa
版次1
doihttps://doi.org/10.1007/b11545989
isbn_softcover978-3-540-28586-1
isbn_ebook978-3-540-32454-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

书目名称Mathematical Foundation of Turbulent Viscous Flows影响因子(影响力)




书目名称Mathematical Foundation of Turbulent Viscous Flows影响因子(影响力)学科排名




书目名称Mathematical Foundation of Turbulent Viscous Flows网络公开度




书目名称Mathematical Foundation of Turbulent Viscous Flows网络公开度学科排名




书目名称Mathematical Foundation of Turbulent Viscous Flows被引频次




书目名称Mathematical Foundation of Turbulent Viscous Flows被引频次学科排名




书目名称Mathematical Foundation of Turbulent Viscous Flows年度引用




书目名称Mathematical Foundation of Turbulent Viscous Flows年度引用学科排名




书目名称Mathematical Foundation of Turbulent Viscous Flows读者反馈




书目名称Mathematical Foundation of Turbulent Viscous Flows读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:38:42 | 显示全部楼层
Peter Constantin immune system within the skin.Written by leading experts in.Much anecdotal information has suggested an influence of psychology and the nervous system on immunity within the skin and the expression of inflammatory skin disorders. Recent years have seen an explosion of knowledge providing a scientif
发表于 2025-3-22 02:14:22 | 显示全部楼层
Giovanni Gallavotti immune system within the skin.Written by leading experts in.Much anecdotal information has suggested an influence of psychology and the nervous system on immunity within the skin and the expression of inflammatory skin disorders. Recent years have seen an explosion of knowledge providing a scientif
发表于 2025-3-22 08:17:26 | 显示全部楼层
Alexandre V. Kazhikhov immune system within the skin.Written by leading experts in.Much anecdotal information has suggested an influence of psychology and the nervous system on immunity within the skin and the expression of inflammatory skin disorders. Recent years have seen an explosion of knowledge providing a scientif
发表于 2025-3-22 12:40:11 | 显示全部楼层
发表于 2025-3-22 16:32:52 | 显示全部楼层
发表于 2025-3-22 21:03:59 | 显示全部楼层
发表于 2025-3-22 22:41:48 | 显示全部楼层
发表于 2025-3-23 03:32:16 | 显示全部楼层
CKN Theory of Singularities of Weak Solutions of the Navier-Stokes Equations, geometrical setting in which the fluid is enclosed in a container Ω. with periodic boundary conditions and side size L. The theory is due to the work of Scheffer, Caffarelli, Kohn, Nirenberg and is called here CKN-theory as it is inspired by the work of the last three authors which considerably imp
发表于 2025-3-23 08:43:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 21:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表