找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Challenges in a New Phase of Materials Science; Kyoto, Japan, August Yasumasa Nishiura,Motoko Kotani Conference proceedings 20

[复制链接]
查看: 38415|回复: 43
发表于 2025-3-21 17:12:44 | 显示全部楼层 |阅读模式
书目名称Mathematical Challenges in a New Phase of Materials Science
副标题Kyoto, Japan, August
编辑Yasumasa Nishiura,Motoko Kotani
视频video
概述Includes the latest studies of mathematical aspects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics.Presen
丛书名称Springer Proceedings in Mathematics & Statistics
图书封面Titlebook: Mathematical Challenges in a New Phase of Materials Science; Kyoto, Japan, August Yasumasa Nishiura,Motoko Kotani Conference proceedings 20
描述This volume comprises eight papers delivered at the RIMS International Conference "Mathematical Challenges in a New Phase of Materials Science", Kyoto, August 4–8, 2014. The contributions address subjects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.
出版日期Conference proceedings 2016
关键词Discrete geometry; Dynamical system theory; Hierarchical structures; Non-equilibrium dynamics; Self-orga
版次1
doihttps://doi.org/10.1007/978-4-431-56104-0
isbn_softcover978-4-431-56777-6
isbn_ebook978-4-431-56104-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Japan KK, part of Springer Nature 2016
The information of publication is updating

书目名称Mathematical Challenges in a New Phase of Materials Science影响因子(影响力)




书目名称Mathematical Challenges in a New Phase of Materials Science影响因子(影响力)学科排名




书目名称Mathematical Challenges in a New Phase of Materials Science网络公开度




书目名称Mathematical Challenges in a New Phase of Materials Science网络公开度学科排名




书目名称Mathematical Challenges in a New Phase of Materials Science被引频次




书目名称Mathematical Challenges in a New Phase of Materials Science被引频次学科排名




书目名称Mathematical Challenges in a New Phase of Materials Science年度引用




书目名称Mathematical Challenges in a New Phase of Materials Science年度引用学科排名




书目名称Mathematical Challenges in a New Phase of Materials Science读者反馈




书目名称Mathematical Challenges in a New Phase of Materials Science读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:17 | 显示全部楼层
发表于 2025-3-22 01:37:58 | 显示全部楼层
发表于 2025-3-22 05:06:50 | 显示全部楼层
An Energy-Consistent Model of Dislocation Dynamics in an Elastic Body,e energy in the slip plane and an elastic energy in the elastic body. The obtained model becomes a 3D-2D bulk-surface system and naturally includes the Peach-Koehler force term and the notion of dislocation core. We also derive a 2D-1D bulk-surface system for a straight screw dislocation and give some numerical examples for it.
发表于 2025-3-22 10:45:03 | 显示全部楼层
Conference proceedings 2016rs, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.
发表于 2025-3-22 16:08:36 | 显示全部楼层
Conference proceedings 2016, August 4–8, 2014. The contributions address subjects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also refle
发表于 2025-3-22 17:18:53 | 显示全部楼层
Persistence of Common Topological Structures by Commutative Triple Ladder Quiver,ecial type of persistence modules defined on the so-called commutative triple ladder for the sake of simplicity. We aim to explain the essence of Auslander-Reiten theory in connection with persistence modules.
发表于 2025-3-22 22:16:37 | 显示全部楼层
,Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schrödinger Operator,easurement, the rotation number of the orbit in the resulting one-dimensional projective space. Combining the interval arithmetic method for dynamical systems, we demonstrate a computer-assisted proof for the existence of isolated eigenvalues within the first spectral gap.
发表于 2025-3-23 02:09:56 | 显示全部楼层
2194-1009 ion between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.978-4-431-56777-6978-4-431-56104-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
发表于 2025-3-23 06:38:48 | 显示全部楼层
ontains a heterogeneous population of cholinergic and GABAergic neurons, while the amygdala displays neurons with a complex receptor subunit composition. Investigation of neurons with this type of molecular diversity benefits from techniques such as scRT-PCR for cell identification. We also illustra
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 09:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表