找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Aspects of Finite Element Methods; Proceedings of the C Ilio Galligani,Enrico Magenes Conference proceedings 1977 Springer-Ver

[复制链接]
楼主: Disclose
发表于 2025-3-26 22:33:37 | 显示全部楼层
Integration techniques for solving algebraic systems,class of non linear algebraic systems (with properties a), b) and c) stated in § 3)), we shall present an efficient iterative method which has been generated by imposing particular conditions on the discrete dynamical systems associated to the given algebraic systems.
发表于 2025-3-27 03:20:46 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/m/image/626015.jpg
发表于 2025-3-27 06:27:39 | 显示全部楼层
https://doi.org/10.1007/BFb0064451Finite; algebra; differential equation; equation; finite element method; minimum
发表于 2025-3-27 13:15:40 | 显示全部楼层
发表于 2025-3-27 17:11:11 | 显示全部楼层
978-3-540-08432-7Springer-Verlag Berlin Heidelberg 1977
发表于 2025-3-27 21:49:44 | 显示全部楼层
Mathematical Aspects of Finite Element Methods978-3-540-37158-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-27 21:57:59 | 显示全部楼层
发表于 2025-3-28 02:47:57 | 显示全部楼层
,Estimations d’Erreur dans L∞ pour les Inequations a Obstacle,Soit W. (resp. u.) la solution approchée obtenue en discrétisant par éléments finis du premier ordre une équation (resp. une inéquation) variationnelle dont la solution est u. On compare les quantités ‖u−u.‖.. et ‖u−w.‖.. (cf. (4.2) suivante); on en déduit une estimation "presque optimale" pour ‖u−u.‖.. (cf. (4.3) suivante).
发表于 2025-3-28 07:20:22 | 显示全部楼层
发表于 2025-3-28 13:00:58 | 显示全部楼层
,Interior L∞ estimates for finite element approximations of solutions of elliptic equations,Let ∧⊂⊂ Ω⊂ . where . is the domain of definition of the solution of an elliptic equation. One assumes certain conditions of regularity on the equation and on the finite elements on Ω. Then one shows that the L. (Ω) convergence of the approximate solution towards the exact solution implies the L. (∧) convergence with the same order.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 20:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表