找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: MathPhys Odyssey 2001; Integrable Models an Masaki Kashiwara,Tetsuji Miwa Book 2002 Birkhäuser Boston 2002 Applications of Mathematics.Comb

[复制链接]
楼主: 审美家
发表于 2025-3-23 12:44:36 | 显示全部楼层
发表于 2025-3-23 16:57:42 | 显示全部楼层
发表于 2025-3-23 21:33:44 | 显示全部楼层
Normalization Factors, Reflection Amplitudes and Integrable Systems, in W-invariant conformal quantum field theories. Using these CFT data we derive vacuum expectation values of exponential fields in affine Toda theories and related perturbed conformal field theories. We apply these results to evaluate explicitly the expectation values of order parameters in the fie
发表于 2025-3-24 00:49:31 | 显示全部楼层
发表于 2025-3-24 06:07:15 | 显示全部楼层
发表于 2025-3-24 08:19:53 | 显示全部楼层
,The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in tert problem based on the Deift-Zhou nonlinear steepest descent method. The asymptotics is proved of the Boutroux type, i.e., it is expressed in terms of the elliptic functions. Kapaev-Novokshenov’s explicit connection formulae between the asymptotic phases in the different sectors are obtained as we
发表于 2025-3-24 13:00:31 | 显示全部楼层
Generalized Umemura Polynomials and the Hirota-Miwa Equation,inlevé . equation. We show that if either ., or .0, or .0, then polynomials . .(.) generate solutions to the Painlevé . equation. We give a new proof of the Noumi-Okada-Okamoto-Umemura conjecture, and describe connections between polynomials . .(., 0). Finally we show that after appropriate resealin
发表于 2025-3-24 18:02:18 | 显示全部楼层
发表于 2025-3-24 20:57:26 | 显示全部楼层
发表于 2025-3-25 03:00:42 | 显示全部楼层
Integrable Boundaries and Universal TBA Functional Equations,odels and the supersymmetric models of conformal field theory and deduce the related TBA functional equations. The derivation uses fusion projectors and applies in the presence of all known integrable boundary conditions on the torus and cylinder. The resulting TBA functional equations are . in the
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 16:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表