找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Materials Data Science; Introduction to Data Stefan Sandfeld Textbook 2024 The Materials Research Society 2024 Data mining.data science.dat

[复制链接]
查看: 33094|回复: 53
发表于 2025-3-21 18:44:35 | 显示全部楼层 |阅读模式
书目名称Materials Data Science
副标题Introduction to Data
编辑Stefan Sandfeld
视频video
概述Introduces machine learning/deep learning methods in detail based on examples and data from materials science.Covers all theoretical foundations in an accessible manner, tailored to materials scientis
丛书名称The Materials Research Society Series
图书封面Titlebook: Materials Data Science; Introduction to Data Stefan Sandfeld Textbook 2024 The Materials Research Society 2024 Data mining.data science.dat
描述.This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced  are implemented “from scratch” using Python and NumPy...The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes’ theorem and correlations, sampling techniques, and exploratory data analysis, and puts them in the context of materials science and engineering. Therefore, it serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. ..The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) a
出版日期Textbook 2024
关键词Data mining; data science; data-driven; machine learning; deep learning; supervised learning; unsupervised
版次1
doihttps://doi.org/10.1007/978-3-031-46565-9
isbn_softcover978-3-031-46567-3
isbn_ebook978-3-031-46565-9Series ISSN 2730-7360 Series E-ISSN 2730-7379
issn_series 2730-7360
copyrightThe Materials Research Society 2024
The information of publication is updating

书目名称Materials Data Science影响因子(影响力)




书目名称Materials Data Science影响因子(影响力)学科排名




书目名称Materials Data Science网络公开度




书目名称Materials Data Science网络公开度学科排名




书目名称Materials Data Science被引频次




书目名称Materials Data Science被引频次学科排名




书目名称Materials Data Science年度引用




书目名称Materials Data Science年度引用学科排名




书目名称Materials Data Science读者反馈




书目名称Materials Data Science读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:58 | 显示全部楼层
发表于 2025-3-22 03:25:23 | 显示全部楼层
发表于 2025-3-22 08:37:36 | 显示全部楼层
发表于 2025-3-22 12:07:29 | 显示全部楼层
发表于 2025-3-22 15:52:53 | 显示全部楼层
发表于 2025-3-22 17:04:15 | 显示全部楼层
Stefan Sandfeld kaum rekonstruieren: Die vielen und intensiven Diskussionen, die ich in Cambridge mit ihm führen konnte, haben nicht nur einzelne meiner Argumente geprägt, son978-3-7908-0569-7978-3-642-51555-2Series ISSN 1431-2034
发表于 2025-3-22 21:12:53 | 显示全部楼层
发表于 2025-3-23 02:32:42 | 显示全部楼层
发表于 2025-3-23 08:31:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 05:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表