找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mastering Machine Learning with Python in Six Steps; A Practical Implemen Manohar Swamynathan Book 2019Latest edition Manohar Swamynathan

[复制链接]
查看: 28326|回复: 39
发表于 2025-3-21 16:05:22 | 显示全部楼层 |阅读模式
书目名称Mastering Machine Learning with Python in Six Steps
副标题A Practical Implemen
编辑Manohar Swamynathan
视频video
概述Compares different machine learning framework implementations for each topic.Covers Reinforcement Learning and Convolutional Neural Networks.Explains best practices for model tuning for better model a
图书封面Titlebook: Mastering Machine Learning with Python in Six Steps; A Practical Implemen Manohar Swamynathan Book 2019Latest edition  Manohar Swamynathan
描述.Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages..You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. . .Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation.
出版日期Book 2019Latest edition
关键词Machine Learning; Python; Scikit-Learn; Model Tuning; Text Mining; Neural Networks; Deep Learning; Recommen
版次2
doihttps://doi.org/10.1007/978-1-4842-4947-5
isbn_softcover978-1-4842-4946-8
isbn_ebook978-1-4842-4947-5
copyright Manohar Swamynathan 2019
The information of publication is updating

书目名称Mastering Machine Learning with Python in Six Steps影响因子(影响力)




书目名称Mastering Machine Learning with Python in Six Steps影响因子(影响力)学科排名




书目名称Mastering Machine Learning with Python in Six Steps网络公开度




书目名称Mastering Machine Learning with Python in Six Steps网络公开度学科排名




书目名称Mastering Machine Learning with Python in Six Steps被引频次




书目名称Mastering Machine Learning with Python in Six Steps被引频次学科排名




书目名称Mastering Machine Learning with Python in Six Steps年度引用




书目名称Mastering Machine Learning with Python in Six Steps年度引用学科排名




书目名称Mastering Machine Learning with Python in Six Steps读者反馈




书目名称Mastering Machine Learning with Python in Six Steps读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:28:58 | 显示全部楼层
发表于 2025-3-22 00:40:23 | 显示全部楼层
Step 3: Fundamentals of Machine Learning,This chapter focuses on different algorithms of supervised and unsupervised machine learning (ML) using two key Python packages.
发表于 2025-3-22 08:22:15 | 显示全部楼层
发表于 2025-3-22 09:30:03 | 显示全部楼层
发表于 2025-3-22 13:31:39 | 显示全部楼层
发表于 2025-3-22 19:47:36 | 显示全部楼层
Step 1: Getting Started in Python 3,and the key concepts around Python programming to get you started with basics. This chapter is an additional step or the prerequisite step for nonPython users. If you are already comfortable with Python, I would recommend you to quickly run through the contents to ensure you are aware of all the key concepts.
发表于 2025-3-22 23:34:54 | 显示全部楼层
发表于 2025-3-23 02:35:21 | 显示全部楼层
发表于 2025-3-23 08:25:54 | 显示全部楼层
Manohar Swamynathanche Dinge, Stoffe oder Substanzen ein für alle Mal sich selbst überlassen zu können. Zugleich erfordern die entsprechenden Ablagerungsstellen erhebliche Aufmerksamkeit und technischen Aufwand. Auch wenn die Deponie ihre Legitimation aus der Annahme zieht, den auf ihr angesammelten Müll zu domestizie
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 17:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表