找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Markov Random Field Modeling in Image Analysis; Stan Z. Li Book 2009Latest edition Springer-Verlag London 2009 Bayesian modeling.Bayesian

[复制链接]
查看: 10515|回复: 46
发表于 2025-3-21 16:24:24 | 显示全部楼层 |阅读模式
书目名称Markov Random Field Modeling in Image Analysis
编辑Stan Z. Li
视频video
概述Comprehensive coverage over a broad range of Markov Random Field Theory.Provides the most recent advances in the field.Includes supplementary material:
丛书名称Advances in Computer Vision and Pattern Recognition
图书封面Titlebook: Markov Random Field Modeling in Image Analysis;  Stan Z. Li Book 2009Latest edition Springer-Verlag London 2009 Bayesian modeling.Bayesian
描述.Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas..
出版日期Book 2009Latest edition
关键词Bayesian modeling; Bayesian network; Computer Vision; Computer vison; Markov random field; Optimization; S
版次3
doihttps://doi.org/10.1007/978-1-84800-279-1
isbn_softcover978-1-84996-767-9
isbn_ebook978-1-84800-279-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer-Verlag London 2009
The information of publication is updating

书目名称Markov Random Field Modeling in Image Analysis影响因子(影响力)




书目名称Markov Random Field Modeling in Image Analysis影响因子(影响力)学科排名




书目名称Markov Random Field Modeling in Image Analysis网络公开度




书目名称Markov Random Field Modeling in Image Analysis网络公开度学科排名




书目名称Markov Random Field Modeling in Image Analysis被引频次




书目名称Markov Random Field Modeling in Image Analysis被引频次学科排名




书目名称Markov Random Field Modeling in Image Analysis年度引用




书目名称Markov Random Field Modeling in Image Analysis年度引用学科排名




书目名称Markov Random Field Modeling in Image Analysis读者反馈




书目名称Markov Random Field Modeling in Image Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:56:40 | 显示全部楼层
发表于 2025-3-22 03:58:28 | 显示全部楼层
High-Level MRF Models,s of such features are usually irregular, and hence the problems fall into categories LP3 and LP4. In this chapter, we present MAP-MRF formulations for solving these problems..We begin with a study on the problem of object matching and recognition under contextual constraints. An MAP-MRF model is th
发表于 2025-3-22 07:11:42 | 显示全部楼层
发表于 2025-3-22 12:25:09 | 显示全部楼层
MRF Model with Robust Statistics,he least squares (LS) error estimates can be arbitrarily wrong when outliers are present in the data. A robust procedure is aimed at making solutions insensitive to the influence of outliers. That is, its performance should be good with all-inlier data and should deteriorate gracefully with increasi
发表于 2025-3-22 16:21:23 | 显示全部楼层
发表于 2025-3-22 19:08:34 | 显示全部楼层
Parameter Estimation in Optimal Object Recognition, successfully. A common practice is to choose such parameters manually on an ad hoc basis, which is a disadvantage. This chapter1 presents a theory of parameter estimation for optimization-based object recognition where the optimal solution is defined as the global minimum of an energy function. The
发表于 2025-3-22 22:14:22 | 显示全部楼层
发表于 2025-3-23 01:51:23 | 显示全部楼层
发表于 2025-3-23 09:14:38 | 显示全部楼层
physicians and/or and scientists involved in the study of prWithout metastasis, prostate cancer would be both tolerable and treatable. The high incidence of indolent and organ confined disease is testament to this sweeping generalisation. Equally, if molecular markers of metastatic spread can be ide
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 10:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表