找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Markov Chain Monte Carlo Methods in Quantum Field Theories; A Modern Primer Anosh Joseph Book 2020 The Author(s), under exclusive license t

[复制链接]
楼主: 民俗学
发表于 2025-3-25 05:53:02 | 显示全部楼层
Hybrid (Hamiltonian) Monte Carlo, motion, and it can be formalized in an elegant way using Hamiltonian dynamics. The two approaches, statistical (MCMC) and deterministic (molecular dynamics), coexisted peacefully for a long time. In 1987, an extraordinary paper by Duane et al. [15] combined the MCMC and molecular dynamics approaches. They called their method . (HMC).
发表于 2025-3-25 09:32:06 | 显示全部楼层
2191-5423 lines on how to avoid common pitfalls while applying Monte C.This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs)
发表于 2025-3-25 11:55:27 | 显示全部楼层
Book 2020field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum
发表于 2025-3-25 16:56:05 | 显示全部楼层
发表于 2025-3-25 20:43:36 | 显示全部楼层
https://doi.org/10.1007/978-3-030-46044-0Monte Carlo Simulation; Lattice Field Theory; Non-perturbative Field Theory; Strongly Coupled Field The
发表于 2025-3-26 02:43:45 | 显示全部楼层
Monte Carlo with Importance Sampling,In this chapter we discuss a method that can increase the efficiency of Monte Carlo integration. This technique is called importance sampling. It is one of the several available . techniques, in the context of Monte Carlo integration.
发表于 2025-3-26 08:07:27 | 显示全部楼层
Markov Chains,In the previous chapter we looked at Monte Carlo integration methods that employ naive sampling and importance sampling. There, we used a uniform random sampling method with or without a weight function to find the integral of a ‘well-behaved’ function.
发表于 2025-3-26 08:37:43 | 显示全部楼层
发表于 2025-3-26 15:28:51 | 显示全部楼层
发表于 2025-3-26 19:06:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 16:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表