找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Marketing and Smart Technologies; Proceedings of ICMar José Luís Reis,Marc K. Peter,Zorica Bogdanović Conference proceedings 2023 The Edito

[复制链接]
查看: 8187|回复: 53
发表于 2025-3-21 20:07:53 | 显示全部楼层 |阅读模式
书目名称Marketing and Smart Technologies
副标题Proceedings of ICMar
编辑José Luís Reis,Marc K. Peter,Zorica Bogdanović
视频video
概述Discusses smart technologies for effective solutions in business and marketing.Presents the outcomes of the ICMarkTech 2022 conference, held during December 1–3, 2022.Serves as a reference resource fo
丛书名称Smart Innovation, Systems and Technologies
图书封面Titlebook: Marketing and Smart Technologies; Proceedings of ICMar José Luís Reis,Marc K. Peter,Zorica Bogdanović Conference proceedings 2023 The Edito
描述This book includes selected papers presented at the International Conference on Marketing and Technologies (ICMarkTech 2022), held at Universidade de Santiago de Compostela, Spain, during December 1–3, 2022. It covers up-to-date cutting-edge research on artificial intelligence applied in marketing, virtual and augmented reality in marketing, business intelligence databases and marketing, data mining and big data, marketing data science, web marketing, e-commerce and v-commerce, social media and networking, geomarketing and IoT, marketing automation and inbound marketing, machine learning applied to marketing, customer data management and CRM, and neuromarketing technologies.
出版日期Conference proceedings 2023
关键词Artificial Intelligence; e-commerce; Business Intelligence; Virtual and Augmented Reality; Marketing Aut
版次1
doihttps://doi.org/10.1007/978-981-19-9099-1
isbn_softcover978-981-19-9101-1
isbn_ebook978-981-19-9099-1Series ISSN 2190-3018 Series E-ISSN 2190-3026
issn_series 2190-3018
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Marketing and Smart Technologies影响因子(影响力)




书目名称Marketing and Smart Technologies影响因子(影响力)学科排名




书目名称Marketing and Smart Technologies网络公开度




书目名称Marketing and Smart Technologies网络公开度学科排名




书目名称Marketing and Smart Technologies被引频次




书目名称Marketing and Smart Technologies被引频次学科排名




书目名称Marketing and Smart Technologies年度引用




书目名称Marketing and Smart Technologies年度引用学科排名




书目名称Marketing and Smart Technologies读者反馈




书目名称Marketing and Smart Technologies读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:53:58 | 显示全部楼层
Smart Innovation, Systems and Technologieshttp://image.papertrans.cn/m/image/624398.jpg
发表于 2025-3-22 00:48:19 | 显示全部楼层
发表于 2025-3-22 04:54:02 | 显示全部楼层
978-981-19-9101-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
发表于 2025-3-22 11:55:33 | 显示全部楼层
发表于 2025-3-22 14:33:54 | 显示全部楼层
2190-3018 ing automation and inbound marketing, machine learning applied to marketing, customer data management and CRM, and neuromarketing technologies.978-981-19-9101-1978-981-19-9099-1Series ISSN 2190-3018 Series E-ISSN 2190-3026
发表于 2025-3-22 17:58:43 | 显示全部楼层
Comparison of Semi-structured Data on MSSQL and PostgreSQLcess, which delays the loading process. Moreover, we did additional indexation tests, from which we concluded that in general, data loading performance degrades. Regarding query performance in PostgreSQL, we conclude that with indexation, queries become three or four percent faster and six times fas
发表于 2025-3-22 23:42:33 | 显示全部楼层
发表于 2025-3-23 01:42:23 | 显示全部楼层
CRM and Smart Technologies in the Hospitality such as China, South Korea, and Malaysia or one case study such as a hotel in Switzerland. This research finds that the previous results might not be generalizable to all consumers or hotels around the world. Hence, it is important to fill the gap in the literature by examining cross-cultural studi
发表于 2025-3-23 05:41:40 | 显示全部楼层
A Systematic Approach to Segmentation Analysis Using Machine Learning for Donation-Based Crowdfundinine behavior using observed and unobserved customer heterogeneity when extant segmentation strategies typically apply RFM metric in combination with demographic and socio-economic attributes to infer and predict customer behavior. The resulting donor clusters inform marketing decision-making in the
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表