找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M

[复制链接]
查看: 53114|回复: 43
发表于 2025-3-21 19:05:40 | 显示全部楼层 |阅读模式
书目名称Marginal Space Learning for Medical Image Analysis
副标题Efficient Detection
编辑Yefeng Zheng,Dorin Comaniciu
视频video
概述Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and eff
图书封面Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection  Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M
描述.Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness..
出版日期Book 2014
关键词3D medical image data; Anatomical structure detection; artificial intelligence; computed tomography; hum
版次1
doihttps://doi.org/10.1007/978-1-4939-0600-0
isbn_softcover978-1-4939-5575-6
isbn_ebook978-1-4939-0600-0
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

书目名称Marginal Space Learning for Medical Image Analysis影响因子(影响力)




书目名称Marginal Space Learning for Medical Image Analysis影响因子(影响力)学科排名




书目名称Marginal Space Learning for Medical Image Analysis网络公开度




书目名称Marginal Space Learning for Medical Image Analysis网络公开度学科排名




书目名称Marginal Space Learning for Medical Image Analysis被引频次




书目名称Marginal Space Learning for Medical Image Analysis被引频次学科排名




书目名称Marginal Space Learning for Medical Image Analysis年度引用




书目名称Marginal Space Learning for Medical Image Analysis年度引用学科排名




书目名称Marginal Space Learning for Medical Image Analysis读者反馈




书目名称Marginal Space Learning for Medical Image Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:45:42 | 显示全部楼层
发表于 2025-3-22 01:10:13 | 显示全部楼层
发表于 2025-3-22 05:33:52 | 显示全部楼层
发表于 2025-3-22 11:06:44 | 显示全部楼层
发表于 2025-3-22 15:10:18 | 显示全部楼层
发表于 2025-3-22 18:03:26 | 显示全部楼层
Yefeng Zheng,Dorin Comaniciuecific leading to the prevailing notion that most of the T cell expansion represents cytokine-mediated bystander activation and/or cross reactive stimulation of non specific cells. To re-examine this issue we quantitated antigen specific CD8 T cells during acute LCMV infection of mice using three se
发表于 2025-3-22 23:21:38 | 显示全部楼层
Yefeng Zheng,Dorin Comaniciu them off. In addition, fine-tuning can be achieved through signals that amplify or downmodulate responses. The complexity in signal transduction pathways that regulate these responses is daunting. Even terminal responses, such as degranulation by effector cells in the immune system, do not follow a
发表于 2025-3-23 01:35:04 | 显示全部楼层
发表于 2025-3-23 06:29:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 12:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表