找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Macroeconomics; A Fresh Start Peter Dorman Textbook 2014 Springer-Verlag GmbH Germany, part of Springer Nature 2014 Economics.Introductory.

[复制链接]
楼主: DEBUT
发表于 2025-3-23 10:35:58 | 显示全部楼层
ie sphere geometry....Further key features of Lie Sphere Geometry 2/e:..- Provides the reader with all the necessary background to reach the frontiers of research in this area..- Fills a gap in the literature; 978-0-387-74655-5978-0-387-74656-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-23 17:35:57 | 显示全部楼层
发表于 2025-3-23 22:04:21 | 显示全部楼层
Peter Dormansciplinary and interrelated field..The topics covered in this Volume are the most modern trends in the field of the Workshop: Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories978-981-19-4753-7978-981-19-4751-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
发表于 2025-3-24 01:41:36 | 显示全部楼层
发表于 2025-3-24 05:03:53 | 显示全部楼层
发表于 2025-3-24 08:37:25 | 显示全部楼层
发表于 2025-3-24 10:54:22 | 显示全部楼层
发表于 2025-3-24 18:35:23 | 显示全部楼层
Peter Dormanh--Chandra‘s Plancherel formula for semisimple Lie groups.  ..Ideal for graduate students and researchers, ".Lie Theory". provides a broad, clearly focused examination of semisimple Lie groups and their integral importance to research in many branches of mathematics..
发表于 2025-3-24 20:31:37 | 显示全部楼层
Peter Dormanor this algebra. This problem has been solved explicitly for only a small number of pairs (.). According to [Di], the “known” cases are (., 2) for all .; (., 3) for . = 2,3,4; and (2, .) for . ≤ 8. See also [DL], [Sh] for recent progress, and [Me] for the state of affairs in the late 19. century.
发表于 2025-3-25 01:03:22 | 显示全部楼层
Peter Dormannto Hurwitz zeta functions which enables us to explicitly demonstrate the equivalence of the cutoff function technique with the zeta regularization technique. Our method of approach confirms the results of Herdeiro et al. (Class. Quant. Gravit. 25:165010, 2008) and Özcan (Class. Quant. Gravit. 23:55
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 07:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表