找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Translation; 16th China Conferenc Junhui Li,Andy Way Conference proceedings 2020 Springer Nature Singapore Pte Ltd. 2020 artificial

[复制链接]
楼主: 贪吃的人
发表于 2025-3-28 16:02:26 | 显示全部楼层
YuQ: A Chinese-Uyghur Medical-Domain Neural Machine Translation Dataset Towards Knowledge-Driven,ing model, we can win the challenge of low translation accuracy in Chinese-Uyghur machine translation professional terms. We provide several benchmark models. Ablation study results show that the models can be enhanced by introducing domain knowledge.
发表于 2025-3-28 20:44:15 | 显示全部楼层
发表于 2025-3-29 01:00:59 | 显示全部楼层
发表于 2025-3-29 04:33:11 | 显示全部楼层
MTNER: A Corpus for Mongolian Tourism Named Entity Recognition,ain BERT representations with the 10 GB of unannotated Mongolian corpus, and trained a NER model based on the BERT tagging model with the newly corpus. Which achieves an overall 82.09 F1 score on Mongolian Tourism Named Entity Recognition and lead to an absolute increase of +3.54 F1 score over the traditional CRF Named Entity Recognition method.
发表于 2025-3-29 07:42:07 | 显示全部楼层
Tencent Submissions for the CCMT 2020 Quality Estimation Task,and Transformer-estimator are conducted and two novel strategies, i.e. top-K strategy and multi-head attention strategy, are proposed to enhance the sentence feature representation. We also propose new effective ensemble technique for sentence-level predictions.
发表于 2025-3-29 13:10:28 | 显示全部楼层
Neural Machine Translation Based on Back-Translation for Multilingual Translation Evaluation Task, We also implemented multi-model ensemble technique to further boost the final result. Experiments show that our machine translation system achieved high accuracy without relying on any bilingual training data.
发表于 2025-3-29 18:59:24 | 显示全部楼层
发表于 2025-3-29 21:07:06 | 显示全部楼层
发表于 2025-3-30 03:54:20 | 显示全部楼层
Hui Huang,Hui Di,Jin’an Xu,Kazushige Ouchi,Yufeng Chenlassical test theory (CTT) and related practices. Beginning slowly in the 1940s and 1950s with the pioneering work of Frederic Lord, Allan Birnbaum, and GeorgRasch,bythe1970sthemeasurementjournalswerefullofimpo978-1-4419-1903-8978-0-387-29054-6Series ISSN 2199-7357 Series E-ISSN 2199-7365
发表于 2025-3-30 07:29:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 16:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表