找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Optimization, and Data Science; 5th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi

[复制链接]
查看: 16590|回复: 66
发表于 2025-3-21 17:54:15 | 显示全部楼层 |阅读模式
书目名称Machine Learning, Optimization, and Data Science
副标题5th International Co
编辑Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning, Optimization, and Data Science; 5th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi
描述.This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019. The 54 full papers presented were carefully reviewed and selected from 158 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications..
出版日期Conference proceedings 2019
关键词artificial intelligence; big data; data analytics; data mining; data science; deep reinforcement learning
版次1
doihttps://doi.org/10.1007/978-3-030-37599-7
isbn_softcover978-3-030-37598-0
isbn_ebook978-3-030-37599-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)




书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)学科排名




书目名称Machine Learning, Optimization, and Data Science网络公开度




书目名称Machine Learning, Optimization, and Data Science网络公开度学科排名




书目名称Machine Learning, Optimization, and Data Science被引频次




书目名称Machine Learning, Optimization, and Data Science被引频次学科排名




书目名称Machine Learning, Optimization, and Data Science年度引用




书目名称Machine Learning, Optimization, and Data Science年度引用学科排名




书目名称Machine Learning, Optimization, and Data Science读者反馈




书目名称Machine Learning, Optimization, and Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:28:41 | 显示全部楼层
发表于 2025-3-22 01:09:04 | 显示全部楼层
Quantitative and Ontology-Based Comparison of Explanations for Image Classification,ions, and in particular the semantic component is systematically overlooked. In this paper we introduce quantitative and ontology-based techniques and metrics in order to enrich and compare different explanations and XAI algorithms.
发表于 2025-3-22 06:49:14 | 显示全部楼层
发表于 2025-3-22 11:29:27 | 显示全部楼层
An Adaptive Parameter Free Particle Swarm Optimization Algorithm for the Permutation Flowshop Schede parameters are optimized together and simultaneously with the optimization of the objective function of the problem. This approach is used for the solution of the Permutation Flowshop Scheduling Problem. The algorithm is tested in 120 benchmark instances and is compared with a number of algorithms from the literature.
发表于 2025-3-22 13:15:02 | 显示全部楼层
发表于 2025-3-22 19:12:49 | 显示全部楼层
发表于 2025-3-23 00:25:44 | 显示全部楼层
发表于 2025-3-23 05:22:05 | 显示全部楼层
A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Lence. Results show in particular that our novel heuristic guidance leads frequently to significantly better solutions. New best solutions are obtained for a wide range of the existing benchmark instances.
发表于 2025-3-23 06:14:09 | 显示全部楼层
Relationship Estimation Metrics for Binary SoC Data,mated relationships to give accuracy scores. The metrics . and . based on covariance and independence are demonstrated to be the most useful, whereas metrics based on the Hamming distance and geometric approaches are shown to be less useful for detecting the presence of relationships between SoC data.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 02:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表