找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Optimization, and Data Science; 9th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[复制链接]
查看: 40451|回复: 65
发表于 2025-3-21 17:54:13 | 显示全部楼层 |阅读模式
书目名称Machine Learning, Optimization, and Data Science
副标题9th International Co
编辑Giuseppe Nicosia,Varun Ojha,Renato Umeton
视频videohttp://file.papertrans.cn/621/620739/620739.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning, Optimization, and Data Science; 9th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202
描述.This book constitutes the refereed proceedings of the 9th International Conference on Machine Learning, Optimization, and Data Science, LOD 2023, which took place in Grasmere, UK, in September 2023. .The 72 full papers included in this book were carefully reviewed and selected from 119 submissions. The proceedings also contain 9 papers from and the Third Symposium on Artificial Intelligence and Neuroscience, ACAIN 2023. The contributions focus on the state of the art and the latest advances in the integration of machine learning, deep learning, nonlinear optimization and data science to provide and support the scientific and technological foundations for interpretable, explainable and trustworthy AI. .
出版日期Conference proceedings 2024
关键词computer security; evolutionary algorithms; fuzzy control; image processing; database systems; artificial
版次1
doihttps://doi.org/10.1007/978-3-031-53969-5
isbn_softcover978-3-031-53968-8
isbn_ebook978-3-031-53969-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)




书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)学科排名




书目名称Machine Learning, Optimization, and Data Science网络公开度




书目名称Machine Learning, Optimization, and Data Science网络公开度学科排名




书目名称Machine Learning, Optimization, and Data Science被引频次




书目名称Machine Learning, Optimization, and Data Science被引频次学科排名




书目名称Machine Learning, Optimization, and Data Science年度引用




书目名称Machine Learning, Optimization, and Data Science年度引用学科排名




书目名称Machine Learning, Optimization, and Data Science读者反馈




书目名称Machine Learning, Optimization, and Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:14:59 | 显示全部楼层
,Knowledge Distillation with Segment Anything (SAM) Model for Planetary Geological Mapping,y training a specialised domain decoder, we can achieve performance comparable to state of the art on this task. Key results indicate that the use of knowledge distillation can significantly reduce the effort required by domain experts for manual annotation and improve the efficiency of image segmen
发表于 2025-3-22 04:20:52 | 显示全部楼层
,Genetic Programming with Synthetic Data for Interpretable Regression Modelling and Limited Data,rm better than it would if trained on the original data alone. We carry out experiments on four well-known regression datasets comparing results between an initial model and a model trained on the initial model’s outputs; we find some results which are positive for each hypothesis and some which are
发表于 2025-3-22 04:55:58 | 显示全部楼层
发表于 2025-3-22 09:42:18 | 显示全部楼层
发表于 2025-3-22 15:30:53 | 显示全部楼层
发表于 2025-3-22 18:02:52 | 显示全部楼层
发表于 2025-3-22 23:34:30 | 显示全部楼层
,Hybrid Model for Impact Analysis of Climate Change on Droughts in Indian Region, the years 2015-2100 for different Shared Socioeconomic Pathways (SSP) scenarios. Both these datasets include the daily precipitation, minimum temperature and maximum temperature values. The proposed model is trained and validated using IMD dataset and the final evaluation of its ability to predict
发表于 2025-3-23 05:26:48 | 显示全部楼层
发表于 2025-3-23 06:22:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-23 16:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表