找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Optimization, and Data Science; 4th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi

[复制链接]
查看: 41361|回复: 67
发表于 2025-3-21 19:32:41 | 显示全部楼层 |阅读模式
书目名称Machine Learning, Optimization, and Data Science
副标题4th International Co
编辑Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning, Optimization, and Data Science; 4th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi
描述This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held in Volterra, Italy, in September 2018..The 46 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence,  reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications..
出版日期Conference proceedings 2019
关键词deep learning; machine learning; reinforcement learning; neural networks; deep reinforcement learning; op
版次1
doihttps://doi.org/10.1007/978-3-030-13709-0
isbn_softcover978-3-030-13708-3
isbn_ebook978-3-030-13709-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)




书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)学科排名




书目名称Machine Learning, Optimization, and Data Science网络公开度




书目名称Machine Learning, Optimization, and Data Science网络公开度学科排名




书目名称Machine Learning, Optimization, and Data Science被引频次




书目名称Machine Learning, Optimization, and Data Science被引频次学科排名




书目名称Machine Learning, Optimization, and Data Science年度引用




书目名称Machine Learning, Optimization, and Data Science年度引用学科排名




书目名称Machine Learning, Optimization, and Data Science读者反馈




书目名称Machine Learning, Optimization, and Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:51:57 | 显示全部楼层
发表于 2025-3-22 04:10:00 | 显示全部楼层
发表于 2025-3-22 07:52:59 | 显示全部楼层
Feature Based Multivariate Data Imputation,ent experimental settings: ., . and . with 25% missing data in the test set over five-fold cross validation. Furthermore, the proposed model has straightforward implementation and can easily incorporate other imputation techniques.
发表于 2025-3-22 11:25:33 | 显示全部楼层
Information-Theoretic Feature Selection Using High-Order Interactions,erived from information theory. We show that our method is able to find interactions which remain undetected when using standard methods. We prove some theoretical properties of the introduced criterion and interaction information.
发表于 2025-3-22 14:05:52 | 显示全部楼层
发表于 2025-3-22 21:02:32 | 显示全部楼层
Generating Term Weighting Schemes Through Genetic Programming, generates a new TWS based on the performance of the learning method. We experience the generated TWSs on three well-known benchmarks. Our study shows that even early generated formulas are quite competitive with the state-of-the-art TWSs and even in some cases outperform them.
发表于 2025-3-23 01:12:52 | 显示全部楼层
Adaptive Dimensionality Reduction in Multiobjective Optimization with Multiextremal Criteria,ion accelerating the search is presented. Efficiency of the proposed approach is demonstrated on the base of representative computational experiment on a test class of bi-criterial MCO problems with essentially multiextremal criteria.
发表于 2025-3-23 04:33:21 | 显示全部楼层
Optimization of Neural Network Training with ELM Based on the Iterative Hybridization of Differentiaining/Testing) obtains the best results, followed by DECC-G and MOS. All three algorithms obtain better results than M-ELM. The experimentation was carried out on 38 classification problems recognized by the scientific community, while Friedman and Wilcoxon nonparametric statistical tests support the results.
发表于 2025-3-23 08:34:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 01:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表