用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Optimization, and Data Science; 8th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[复制链接]
查看: 44986|回复: 46
发表于 2025-3-21 19:06:13 | 显示全部楼层 |阅读模式
书目名称Machine Learning, Optimization, and Data Science
副标题8th International Co
编辑Giuseppe Nicosia,Varun Ojha,Renato Umeton
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning, Optimization, and Data Science; 8th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202
描述This two-volume set, LNCS 13810 and 13811,  constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022.. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
出版日期Conference proceedings 2023
关键词adaptive control systems; anomaly-detection algorithms; artificial intelligence; automation; bayesian ne
版次1
doihttps://doi.org/10.1007/978-3-031-25891-6
isbn_softcover978-3-031-25890-9
isbn_ebook978-3-031-25891-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)




书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)学科排名




书目名称Machine Learning, Optimization, and Data Science网络公开度




书目名称Machine Learning, Optimization, and Data Science网络公开度学科排名




书目名称Machine Learning, Optimization, and Data Science被引频次




书目名称Machine Learning, Optimization, and Data Science被引频次学科排名




书目名称Machine Learning, Optimization, and Data Science年度引用




书目名称Machine Learning, Optimization, and Data Science年度引用学科排名




书目名称Machine Learning, Optimization, and Data Science读者反馈




书目名称Machine Learning, Optimization, and Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:08:54 | 显示全部楼层
发表于 2025-3-22 04:16:36 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620735.jpg
发表于 2025-3-22 07:26:14 | 显示全部楼层
发表于 2025-3-22 10:13:26 | 显示全部楼层
,Pooling Graph Convolutional Networks for Structural Performance Prediction,t is required for fitness computation can be prohibitively expensive. Employing surrogate models as performance predictors can reduce or remove the need for these costly evaluations. We present a deep graph learning approach that achieves state-of-the-art performance in multiple NAS performance pred
发表于 2025-3-22 13:20:24 | 显示全部楼层
发表于 2025-3-22 19:54:08 | 显示全部楼层
发表于 2025-3-23 01:18:14 | 显示全部楼层
发表于 2025-3-23 03:32:33 | 显示全部楼层
,Multi-omic Data Integration and Feature Selection for Survival-Based Patient Stratification via Supforming high-quality multi-omic measurements have fuelled insights through machine learning. Previous studies have shown promise on using multiple omic layers to predict survival and stratify cancer patients. In this paper, we develop and report a Supervised Autoencoder (SAE) model for survival-base
发表于 2025-3-23 08:13:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-17 07:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表