找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning, Image Processing, Network Security and Data Sciences; 4th International Co Nilay Khare,Deepak Singh Tomar,Vaibhav Soni Co

[复制链接]
查看: 49347|回复: 56
发表于 2025-3-21 19:01:42 | 显示全部楼层 |阅读模式
书目名称Machine Learning, Image Processing, Network Security and Data Sciences
副标题4th International Co
编辑Nilay Khare,Deepak Singh Tomar,Vaibhav Soni
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Machine Learning, Image Processing, Network Security and Data Sciences; 4th International Co Nilay Khare,Deepak Singh Tomar,Vaibhav Soni Co
描述This two-volume set (CCIS 1762-1763) constitutes the refereed proceedings of the 4th International Conference on Machine Learning, Image Processing, Network Security and Data Sciences, MIND 2022, held in Bhopal, India, in December 2022. .The 64 papers presented in this two-volume set were thoroughly reviewed and selected from 399 submissions. The papers are organized according to the following topical sections: ​machine learning and computational intelligence; data sciences; image processing and computer vision; network and cyber security..
出版日期Conference proceedings 2022
关键词artificial intelligence; communication systems; computer hardware; computer networks; computer security;
版次1
doihttps://doi.org/10.1007/978-3-031-24352-3
isbn_softcover978-3-031-24351-6
isbn_ebook978-3-031-24352-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning, Image Processing, Network Security and Data Sciences影响因子(影响力)




书目名称Machine Learning, Image Processing, Network Security and Data Sciences影响因子(影响力)学科排名




书目名称Machine Learning, Image Processing, Network Security and Data Sciences网络公开度




书目名称Machine Learning, Image Processing, Network Security and Data Sciences网络公开度学科排名




书目名称Machine Learning, Image Processing, Network Security and Data Sciences被引频次




书目名称Machine Learning, Image Processing, Network Security and Data Sciences被引频次学科排名




书目名称Machine Learning, Image Processing, Network Security and Data Sciences年度引用




书目名称Machine Learning, Image Processing, Network Security and Data Sciences年度引用学科排名




书目名称Machine Learning, Image Processing, Network Security and Data Sciences读者反馈




书目名称Machine Learning, Image Processing, Network Security and Data Sciences读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:44:16 | 显示全部楼层
A Computational Approach to Identify Normal and Abnormal Persons Gait Using Various Machine Learning able to classify abnormal and normal with extending accuracy from 70 to 93% using various machine learning, deep learning algorithms and CNN classifier. The novelty of this paper is to increase the classification accuracy with fast processing and reduce the time complexity of the dataset.
发表于 2025-3-22 04:03:26 | 显示全部楼层
发表于 2025-3-22 08:15:52 | 显示全部楼层
A Review on: Deep Learning and Computer Intelligent Techniques Using X-Ray Imaging for the Early Detd by computer intelligence techniques such as PSO/ACO. We anticipate it will be possible to construct a prediction model that allows as a means of early detection of patients whose knee structure will degenerate quickly due to arthritis.
发表于 2025-3-22 11:20:03 | 显示全部楼层
A Novel Approach to Analyse Lung Cancer Progression and Metastasis Using Page Rank Techniqueom this populace. We analyse that primary lung cancers tend to metastasize with different frequencies to different metastatic sites. Generally, regional lymph nodes are the most frequent metastatic target whereas uterus is the least common.
发表于 2025-3-22 14:39:22 | 显示全部楼层
A Survey on Human Activity Recognition Using Deep Learning Techniques and Wearable Sensor Datais paper, we have discussed the overview of HAR, its applications, and popular benchmark datasets available publicly. Further, we discussed various DL techniques applied for HAR applications. We have also presented the challenges associated with the field and the future directions for performing more vital research in HAR.
发表于 2025-3-22 17:26:00 | 显示全部楼层
发表于 2025-3-22 21:27:26 | 显示全部楼层
发表于 2025-3-23 02:43:50 | 显示全部楼层
发表于 2025-3-23 07:09:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 00:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表