找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning with Microsoft Technologies; Selecting the Right Leila Etaati Book 2019 Leila Etaati 2019 Microsoft Advance Analytics Arc

[复制链接]
查看: 24117|回复: 58
发表于 2025-3-21 19:50:42 | 显示全部楼层 |阅读模式
书目名称Machine Learning with Microsoft Technologies
副标题Selecting the Right
编辑Leila Etaati
视频video
概述Offers methods for choosing the right architecture for a machine learning solution using Microsoft technologies.Gives you valuable knowledge for creating, developing, and deploying machine learning in
图书封面Titlebook: Machine Learning with Microsoft Technologies; Selecting the Right  Leila Etaati Book 2019 Leila Etaati 2019 Microsoft Advance Analytics Arc
描述.Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more..The ability to analyze massive amounts of real-time data and predict future behavior of an organization is critical to its long-term success. Data science, and more specifically machine learning (ML), is today’s game changer and should be a key building block in every company’s strategy. Managing a machine learning process from business understanding, data acquisition and cleaning, modeling, and deployment in each tool is a valuable skill set...Machine Learning with Microsoft Technologies. is a demo-driven book that explains how to do machine learning with Microsoft technologies. You will gain valuable insight into designing the best architecture for development, sharing, and deploying a machine learning solution. This book simplifies the process of choosing the right architecture and tools for doing machine learning based on your specific infrastructure needs and requirements. ..Detailed content is provided on the main algorithms fo
出版日期Book 2019
关键词Microsoft Advance Analytics Architecture; R services; Machine Learning Services; Azure Data Lake; Spark;
版次1
doihttps://doi.org/10.1007/978-1-4842-3658-1
isbn_softcover978-1-4842-3657-4
isbn_ebook978-1-4842-3658-1
copyrightLeila Etaati 2019
The information of publication is updating

书目名称Machine Learning with Microsoft Technologies影响因子(影响力)




书目名称Machine Learning with Microsoft Technologies影响因子(影响力)学科排名




书目名称Machine Learning with Microsoft Technologies网络公开度




书目名称Machine Learning with Microsoft Technologies网络公开度学科排名




书目名称Machine Learning with Microsoft Technologies被引频次




书目名称Machine Learning with Microsoft Technologies被引频次学科排名




书目名称Machine Learning with Microsoft Technologies年度引用




书目名称Machine Learning with Microsoft Technologies年度引用学科排名




书目名称Machine Learning with Microsoft Technologies读者反馈




书目名称Machine Learning with Microsoft Technologies读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:42:08 | 显示全部楼层
发表于 2025-3-22 03:43:30 | 显示全部楼层
发表于 2025-3-22 08:28:01 | 显示全部楼层
发表于 2025-3-22 10:29:34 | 显示全部楼层
发表于 2025-3-22 14:39:49 | 显示全部楼层
发表于 2025-3-22 17:26:18 | 显示全部楼层
发表于 2025-3-22 23:59:32 | 显示全部楼层
Data Wrangling for Predictive AnalysisIn the machine learning process, after business understanding, the next step is collecting the right data, feature selection, and data wrangling. Data wrangling includes data cleaning, joining different data sources, quality control, data integration, data transformation, and data reduction processes (Figure 6-1).
发表于 2025-3-23 04:20:03 | 显示全部楼层
Introduction to Machine Learningrch and specific industries. In most fields, there is a valuable opportunity to use machine learning to obtain more concise and in-depth information from available data. As a result, most big software companies provide opportunities to their users to access machine learning via easy-to-use software.
发表于 2025-3-23 06:26:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 13:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表