找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Radiation Oncology; Theory and Applicati Issam El Naqa,Ruijiang Li,Martin J. Murphy Book 20151st edition Springer Inter

[复制链接]
查看: 55066|回复: 53
发表于 2025-3-21 16:09:05 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Radiation Oncology
副标题Theory and Applicati
编辑Issam El Naqa,Ruijiang Li,Martin J. Murphy
视频videohttp://file.papertrans.cn/621/620700/620700.mp4
概述Provides a complete overview of the role of machine learning in radiation oncology and medical physics.Covers the use of machine learning in quality assurance, computer-aided detection, image-guided r
图书封面Titlebook: Machine Learning in Radiation Oncology; Theory and Applicati Issam El Naqa,Ruijiang Li,Martin J. Murphy Book 20151st edition Springer Inter
描述​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
出版日期Book 20151st edition
关键词Machine Learning; Medical Physics; Outcome Modelling; Radiation Oncology; Radiation Physics; Treatment Pl
版次1
doihttps://doi.org/10.1007/978-3-319-18305-3
isbn_softcover978-3-319-35464-4
isbn_ebook978-3-319-18305-3
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Machine Learning in Radiation Oncology影响因子(影响力)




书目名称Machine Learning in Radiation Oncology影响因子(影响力)学科排名




书目名称Machine Learning in Radiation Oncology网络公开度




书目名称Machine Learning in Radiation Oncology网络公开度学科排名




书目名称Machine Learning in Radiation Oncology被引频次




书目名称Machine Learning in Radiation Oncology被引频次学科排名




书目名称Machine Learning in Radiation Oncology年度引用




书目名称Machine Learning in Radiation Oncology年度引用学科排名




书目名称Machine Learning in Radiation Oncology读者反馈




书目名称Machine Learning in Radiation Oncology读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:31:02 | 显示全部楼层
发表于 2025-3-22 02:29:05 | 显示全部楼层
发表于 2025-3-22 05:04:19 | 显示全部楼层
发表于 2025-3-22 09:43:04 | 显示全部楼层
iction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.978-3-319-35464-4978-3-319-18305-3
发表于 2025-3-22 16:33:55 | 显示全部楼层
发表于 2025-3-22 20:20:36 | 显示全部楼层
Sangkyu Lee,Issam El Naqa, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided....In the pr978-3-540-32594-9Series ISSN 1615-1844 Series E-ISSN 1616-9522
发表于 2025-3-22 22:54:34 | 显示全部楼层
发表于 2025-3-23 02:14:37 | 显示全部楼层
发表于 2025-3-23 08:56:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 18:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表