找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Molecular Sciences; Chen Qu,Hanchao Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[复制链接]
查看: 41455|回复: 45
发表于 2025-3-21 17:20:40 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Molecular Sciences
编辑Chen Qu,Hanchao Liu
视频video
概述Comprehensive survey of machine learning in molecular sciences.Perspectives on challenges and future of machine learning in chemistry.Features contributions from experts in the field
丛书名称Challenges and Advances in Computational Chemistry and Physics
图书封面Titlebook: Machine Learning in Molecular Sciences;  Chen Qu,Hanchao Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic
描述Machine learning and artificial intelligence have propelled research across various molecular science disciplines thanks to the rapid progress in computing hardware, algorithms, and data accumulation. This book presents recent machine learning applications in the broad research field of molecular sciences. Written by an international group of renowned experts, this edited volume covers both the machine learning methodologies and state-of-the-art machine learning applications in a wide range of topics in molecular sciences, from electronic structure theory to nuclear dynamics of small molecules, to the design and synthesis of large organic and biological molecules. This book is a valuable resource for researchers and students interested in applying machine learning in the research of molecular sciences.
出版日期Book 2023
关键词Machine Learning; Molecular Sciences; Deep Learning; Artificial Intelligence; Graph Neural Networks; Voxe
版次1
doihttps://doi.org/10.1007/978-3-031-37196-7
isbn_softcover978-3-031-37198-1
isbn_ebook978-3-031-37196-7Series ISSN 2542-4491 Series E-ISSN 2542-4483
issn_series 2542-4491
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning in Molecular Sciences影响因子(影响力)




书目名称Machine Learning in Molecular Sciences影响因子(影响力)学科排名




书目名称Machine Learning in Molecular Sciences网络公开度




书目名称Machine Learning in Molecular Sciences网络公开度学科排名




书目名称Machine Learning in Molecular Sciences被引频次




书目名称Machine Learning in Molecular Sciences被引频次学科排名




书目名称Machine Learning in Molecular Sciences年度引用




书目名称Machine Learning in Molecular Sciences年度引用学科排名




书目名称Machine Learning in Molecular Sciences读者反馈




书目名称Machine Learning in Molecular Sciences读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:11:52 | 显示全部楼层
Machine Learning in Molecular Sciences978-3-031-37196-7Series ISSN 2542-4491 Series E-ISSN 2542-4483
发表于 2025-3-22 02:37:21 | 显示全部楼层
https://doi.org/10.1007/978-3-031-37196-7Machine Learning; Molecular Sciences; Deep Learning; Artificial Intelligence; Graph Neural Networks; Voxe
发表于 2025-3-22 07:45:05 | 显示全部楼层
Development of Exchange-Correlation Functionals Assisted by Machine Learning,ation functionals of density functional theory. In this chapter, we review how the ML tools are used for this and the performances achieved recently. It is revealed that the ML, not being opposed to the analytical methods, complements human intuition and advances the development of the first-principles calculation with desired accuracy.
发表于 2025-3-22 09:34:15 | 显示全部楼层
Chen Qu,Hanchao LiuComprehensive survey of machine learning in molecular sciences.Perspectives on challenges and future of machine learning in chemistry.Features contributions from experts in the field
发表于 2025-3-22 15:45:54 | 显示全部楼层
Challenges and Advances in Computational Chemistry and Physicshttp://image.papertrans.cn/m/image/620699.jpg
发表于 2025-3-22 18:02:54 | 显示全部楼层
发表于 2025-3-22 21:47:53 | 显示全部楼层
发表于 2025-3-23 02:48:37 | 显示全部楼层
发表于 2025-3-23 05:52:23 | 显示全部楼层
Development of Exchange-Correlation Functionals Assisted by Machine Learning,ation functionals of density functional theory. In this chapter, we review how the ML tools are used for this and the performances achieved recently. It is revealed that the ML, not being opposed to the analytical methods, complements human intuition and advances the development of the first-princip
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 09:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表