找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Medicine - a Complete Overview; Ton J. Cleophas,Aeilko H. Zwinderman Textbook 20151st edition Springer International P

[复制链接]
查看: 15435|回复: 57
发表于 2025-3-21 16:51:19 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Medicine - a Complete Overview
编辑Ton J. Cleophas,Aeilko H. Zwinderman
视频video
概述First publication of a complete overview of machine learning methodologies for the medical and health sector.Written as a training companion, and as a must-read, not only for physicians and students,
图书封面Titlebook: Machine Learning in Medicine - a Complete Overview;  Ton J. Cleophas,Aeilko H. Zwinderman Textbook 20151st edition Springer International P
描述.The current book is the first publication of a complete overview of machine learning methodologies for the medical and health sector. It was written as a training companion and as a must-read, not only for physicians and students, but also for any one involved in the process and progress of health and health care. In eighty chapters eighty different machine learning methodologies are reviewed, in combination with data examples for self-assessment. Each chapter can be studied without the need to consult other chapters..The amount of data stored in the world‘s databases doubles every 20 months, and clinicians, familiar with traditional statistical methods, are at a loss to analyze them. Traditional methods have, indeed, difficulty to identify outliers in large datasets, and to find patterns in big data and data with multiple exposure / outcome variables. In addition, analysis-rules for surveys and questionnaires, which are currently common methods of data collection, are, essentially, missing. Fortunately, the new discipline, machine learning, is able to cover all of these limitations..So far medical professionals have been rather reluctant to use machine learning. Also, in the fiel
出版日期Textbook 20151st edition
关键词Coputer science; Data mining; Machine learning; SPSS statistical software; various data mining software
版次1
doihttps://doi.org/10.1007/978-3-319-15195-3
isbn_softcover978-3-319-38638-6
isbn_ebook978-3-319-15195-3
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Machine Learning in Medicine - a Complete Overview影响因子(影响力)




书目名称Machine Learning in Medicine - a Complete Overview影响因子(影响力)学科排名




书目名称Machine Learning in Medicine - a Complete Overview网络公开度




书目名称Machine Learning in Medicine - a Complete Overview网络公开度学科排名




书目名称Machine Learning in Medicine - a Complete Overview被引频次




书目名称Machine Learning in Medicine - a Complete Overview被引频次学科排名




书目名称Machine Learning in Medicine - a Complete Overview年度引用




书目名称Machine Learning in Medicine - a Complete Overview年度引用学科排名




书目名称Machine Learning in Medicine - a Complete Overview读者反馈




书目名称Machine Learning in Medicine - a Complete Overview读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:06:52 | 显示全部楼层
发表于 2025-3-22 03:02:56 | 显示全部楼层
978-3-319-38638-6Springer International Publishing Switzerland 2015
发表于 2025-3-22 05:20:50 | 显示全部楼层
发表于 2025-3-22 10:36:59 | 显示全部楼层
发表于 2025-3-22 15:10:15 | 显示全部楼层
Hierarchical Clustering and K-Means Clustering to Identify Subgroups in Surveys (50 Patients)Clusters are subgroups in a survey estimated by the distances between the values needed to connect the patients, otherwise called cases. It is an important methodology in explorative data mining.
发表于 2025-3-22 20:48:00 | 显示全部楼层
Density-Based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients)Clusters are subgroups in a survey estimated by the distances between the values needed to connect the patients, otherwise called cases. It is an important methodology in explorative data mining. Density-based clustering is used.
发表于 2025-3-23 00:48:39 | 显示全部楼层
Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future PatiTo assess whether two step clustering of survey data can be trained to identify subgroups and subgroup membership.
发表于 2025-3-23 04:49:52 | 显示全部楼层
发表于 2025-3-23 07:01:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 13:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表