用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Medical Imaging; 9th International Wo Yinghuan Shi,Heung-Il Suk,Mingxia Liu Conference proceedings 2018 Springer Nature

[复制链接]
查看: 43844|回复: 64
发表于 2025-3-21 17:06:40 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Medical Imaging
副标题9th International Wo
编辑Yinghuan Shi,Heung-Il Suk,Mingxia Liu
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning in Medical Imaging; 9th International Wo Yinghuan Shi,Heung-Il Suk,Mingxia Liu Conference proceedings 2018 Springer Nature
描述This book constitutes the proceedings of the 9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018, held in conjunction with MICCAI 2018 in Granada, Spain, in September 2018..The 45 papers presented in this volume were carefully reviewed and selected from 82 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging. .
出版日期Conference proceedings 2018
关键词artificial intelligence; automatic segmentations; classification and regression trees; convolutional ne
版次1
doihttps://doi.org/10.1007/978-3-030-00919-9
isbn_softcover978-3-030-00918-2
isbn_ebook978-3-030-00919-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Machine Learning in Medical Imaging影响因子(影响力)




书目名称Machine Learning in Medical Imaging影响因子(影响力)学科排名




书目名称Machine Learning in Medical Imaging网络公开度




书目名称Machine Learning in Medical Imaging网络公开度学科排名




书目名称Machine Learning in Medical Imaging被引频次




书目名称Machine Learning in Medical Imaging被引频次学科排名




书目名称Machine Learning in Medical Imaging年度引用




书目名称Machine Learning in Medical Imaging年度引用学科排名




书目名称Machine Learning in Medical Imaging读者反馈




书目名称Machine Learning in Medical Imaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:36 | 显示全部楼层
发表于 2025-3-22 02:01:56 | 显示全部楼层
发表于 2025-3-22 05:20:10 | 显示全部楼层
Conference proceedings 2018CCAI 2018 in Granada, Spain, in September 2018..The 45 papers presented in this volume were carefully reviewed and selected from 82 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging. .
发表于 2025-3-22 10:01:17 | 显示全部楼层
发表于 2025-3-22 16:51:13 | 显示全部楼层
发表于 2025-3-22 17:21:21 | 显示全部楼层
发表于 2025-3-22 23:42:20 | 显示全部楼层
Dynamic Multi-scale CNN Forest Learning for Automatic Cervical Cancer Segmentation,to the best of our knowledge, these have not been used for cervical tumor segmentation. More importantly, while the majority of innovative deep-learning works using convolutional neural networks (CNNs) focus on developing more sophisticated and robust architectures (e.g., ResNet, U-Net, GANs), there
发表于 2025-3-23 05:27:06 | 显示全部楼层
Multi-task Fundus Image Quality Assessment via Transfer Learning and Landmarks Detection,, including image artifact, clarity, and field definition. In this paper, we propose a multi-task deep learning framework for automated assessment of fundus image quality. The network can classify whether an image is gradable, together with interpretable information about quality factors. The propos
发表于 2025-3-23 07:25:42 | 显示全部楼层
End-to-End Lung Nodule Detection in Computed Tomography,ptimized for radiologists. Computer vision can capture features that is subtle to human observers, so it is desirable to design a CAD system operating on the raw data. In this paper, we proposed a deep-neural-network-based detection system for lung nodule detection in computed tomography (CT). A pri
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 20:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表